Suppr超能文献

探讨碱基去溶剂化和形状互补在 O(6)-甲基鸟嘌呤错配复制过程中的作用。

Exploring the roles of nucleobase desolvation and shape complementarity during the misreplication of O(6)-methylguanine.

机构信息

Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.

出版信息

J Mol Biol. 2011 Sep 23;412(3):325-39. doi: 10.1016/j.jmb.2011.07.011. Epub 2011 Jul 23.

Abstract

O(6)-methylguanine (O(6)-MeG) is a miscoding DNA lesion arising from the alkylation of guanine. This report uses the bacteriophage T4 DNA polymerase as a model to probe the roles of hydrogen-bonding interactions, shape/size, and nucleobase desolvation during the replication of this miscoding lesion. This was accomplished by using transient kinetic techniques to monitor the kinetic parameters for incorporating and extending natural and nonnatural nucleotides. In general, the efficiency of nucleotide incorporation does not depend on the hydrogen-bonding potential of the incoming nucleotide. Instead, nucleobase hydrophobicity and shape complementarity appear to be the preeminent factors controlling nucleotide incorporation. In addition, shape complementarity plays a large role in controlling the extension of various mispairs containing O(6)-MeG. This is evident as the rate constants for extension correlate with proper interglycosyl distances and symmetry between the base angles of the formed mispair. Base pairs not conforming to an acceptable geometry within the polymerase's active site are refractory to elongation and are processed via exonuclease proofreading. The collective data set encompassing nucleotide incorporation, extension, and excision is used to generate a model accounting for the mutagenic potential of O(6)-MeG observed in vivo. In addition, kinetic studies monitoring the incorporation and extension of nonnatural nucleotides identified an analog that displays high selectivity for incorporation opposite O(6)-MeG compared to unmodified purines. The unusual selectivity of this analog for replicating damaged DNA provides a novel biochemical tool to study translesion DNA synthesis.

摘要

O(6)- 甲基鸟嘌呤(O(6)-MeG)是一种由鸟嘌呤烷基化产生的错配 DNA 损伤。本报告使用噬菌体 T4 DNA 聚合酶作为模型,探究氢键相互作用、形状/大小和碱基去溶剂化在复制这种错配损伤时的作用。这是通过使用瞬态动力学技术来监测掺入和扩展天然和非天然核苷酸的动力学参数来实现的。一般来说,核苷酸掺入的效率不依赖于进入核苷酸的氢键潜力。相反,碱基疏水性和形状互补性似乎是控制核苷酸掺入的首要因素。此外,形状互补性在控制各种包含 O(6)-MeG 的错配延伸中起着重要作用。这一点从延伸的速率常数与形成错配的糖苷键间距离和碱基角之间的对称性相关中可以明显看出。不符合聚合酶活性位点内可接受几何形状的碱基对不易进行延伸,而是通过外切核酸酶校对进行处理。包含核苷酸掺入、延伸和切除的综合数据集用于生成一个模型,解释体内观察到的 O(6)-MeG 的诱变潜力。此外,监测非天然核苷酸掺入和延伸的动力学研究鉴定出一种类似物,与未修饰的嘌呤相比,其对 O(6)-MeG 掺入具有高选择性。这种类似物对复制受损 DNA 的异常选择性为研究跨损伤 DNA 合成提供了一种新的生化工具。

相似文献

1
Exploring the roles of nucleobase desolvation and shape complementarity during the misreplication of O(6)-methylguanine.
J Mol Biol. 2011 Sep 23;412(3):325-39. doi: 10.1016/j.jmb.2011.07.011. Epub 2011 Jul 23.
2
Evaluating the contribution of base stacking during translesion DNA replication.
Biochemistry. 2004 Jan 20;43(2):393-404. doi: 10.1021/bi034948s.
3
Spectroscopic analysis of polymerization and exonuclease proofreading by a high-fidelity DNA polymerase during translesion DNA synthesis.
Biochim Biophys Acta. 2013 Jan;1834(1):34-45. doi: 10.1016/j.bbapap.2012.08.019. Epub 2012 Aug 28.
6
Formation of purine-purine mispairs by Sulfolobus solfataricus DNA polymerase IV.
Biochemistry. 2008 Aug 5;47(31):8157-64. doi: 10.1021/bi800820m. Epub 2008 Jul 11.
7
A Comparative Analysis of Translesion DNA Synthesis Catalyzed by a High-Fidelity DNA Polymerase.
J Mol Biol. 2017 Jul 21;429(15):2308-2323. doi: 10.1016/j.jmb.2017.06.003. Epub 2017 Jun 7.
8
Structural basis for proficient incorporation of dTTP opposite O6-methylguanine by human DNA polymerase iota.
J Biol Chem. 2010 Dec 24;285(52):40666-72. doi: 10.1074/jbc.M110.183665. Epub 2010 Oct 20.
9
Error-prone bypass of O-methylguanine by DNA polymerase of Pseudomonas aeruginosa phage PaP1.
DNA Repair (Amst). 2017 Sep;57:35-44. doi: 10.1016/j.dnarep.2017.06.021. Epub 2017 Jun 10.

引用本文的文献

1
The use of an artificial nucleotide for polymerase-based recognition of carcinogenic O6-alkylguanine DNA adducts.
Nucleic Acids Res. 2016 Aug 19;44(14):6564-73. doi: 10.1093/nar/gkw589. Epub 2016 Jul 4.
3
DNA damage by reactive species: Mechanisms, mutation and repair.
J Biosci. 2012 Jul;37(3):503-17. doi: 10.1007/s12038-012-9218-2.
4
Development of a 'clickable' non-natural nucleotide to visualize the replication of non-instructional DNA lesions.
Nucleic Acids Res. 2012 Mar;40(5):2357-67. doi: 10.1093/nar/gkr980. Epub 2011 Nov 15.

本文引用的文献

1
Quantifying the energetic contributions of desolvation and π-electron density during translesion DNA synthesis.
Nucleic Acids Res. 2011 Mar;39(4):1623-37. doi: 10.1093/nar/gkq925. Epub 2010 Oct 15.
3
The kinetic and chemical mechanism of high-fidelity DNA polymerases.
Biochim Biophys Acta. 2010 May;1804(5):1041-8. doi: 10.1016/j.bbapap.2010.01.006. Epub 2010 Jan 15.
5
Mutagenicity of N3-methyladenine: a multi-translesion polymerase affair.
Mutat Res. 2010 Jan 5;683(1-2):50-6. doi: 10.1016/j.mrfmmm.2009.10.007.
6
Mechanisms of DNA polymerases.
Chem Rev. 2009 Jul;109(7):2862-79. doi: 10.1021/cr800530b.
8
Role of mismatch repair and MGMT in response to anticancer therapies.
Anticancer Agents Med Chem. 2008 May;8(4):368-80. doi: 10.2174/187152008784220276.
9
Discovery, characterization, and optimization of an unnatural base pair for expansion of the genetic alphabet.
J Am Chem Soc. 2008 Feb 20;130(7):2336-43. doi: 10.1021/ja078223d. Epub 2008 Jan 25.
10
Triazene compounds: mechanism of action and related DNA repair systems.
Pharmacol Res. 2007 Oct;56(4):275-87. doi: 10.1016/j.phrs.2007.08.003. Epub 2007 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验