Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
J Mol Biol. 2011 Sep 23;412(3):325-39. doi: 10.1016/j.jmb.2011.07.011. Epub 2011 Jul 23.
O(6)-methylguanine (O(6)-MeG) is a miscoding DNA lesion arising from the alkylation of guanine. This report uses the bacteriophage T4 DNA polymerase as a model to probe the roles of hydrogen-bonding interactions, shape/size, and nucleobase desolvation during the replication of this miscoding lesion. This was accomplished by using transient kinetic techniques to monitor the kinetic parameters for incorporating and extending natural and nonnatural nucleotides. In general, the efficiency of nucleotide incorporation does not depend on the hydrogen-bonding potential of the incoming nucleotide. Instead, nucleobase hydrophobicity and shape complementarity appear to be the preeminent factors controlling nucleotide incorporation. In addition, shape complementarity plays a large role in controlling the extension of various mispairs containing O(6)-MeG. This is evident as the rate constants for extension correlate with proper interglycosyl distances and symmetry between the base angles of the formed mispair. Base pairs not conforming to an acceptable geometry within the polymerase's active site are refractory to elongation and are processed via exonuclease proofreading. The collective data set encompassing nucleotide incorporation, extension, and excision is used to generate a model accounting for the mutagenic potential of O(6)-MeG observed in vivo. In addition, kinetic studies monitoring the incorporation and extension of nonnatural nucleotides identified an analog that displays high selectivity for incorporation opposite O(6)-MeG compared to unmodified purines. The unusual selectivity of this analog for replicating damaged DNA provides a novel biochemical tool to study translesion DNA synthesis.
O(6)- 甲基鸟嘌呤(O(6)-MeG)是一种由鸟嘌呤烷基化产生的错配 DNA 损伤。本报告使用噬菌体 T4 DNA 聚合酶作为模型,探究氢键相互作用、形状/大小和碱基去溶剂化在复制这种错配损伤时的作用。这是通过使用瞬态动力学技术来监测掺入和扩展天然和非天然核苷酸的动力学参数来实现的。一般来说,核苷酸掺入的效率不依赖于进入核苷酸的氢键潜力。相反,碱基疏水性和形状互补性似乎是控制核苷酸掺入的首要因素。此外,形状互补性在控制各种包含 O(6)-MeG 的错配延伸中起着重要作用。这一点从延伸的速率常数与形成错配的糖苷键间距离和碱基角之间的对称性相关中可以明显看出。不符合聚合酶活性位点内可接受几何形状的碱基对不易进行延伸,而是通过外切核酸酶校对进行处理。包含核苷酸掺入、延伸和切除的综合数据集用于生成一个模型,解释体内观察到的 O(6)-MeG 的诱变潜力。此外,监测非天然核苷酸掺入和延伸的动力学研究鉴定出一种类似物,与未修饰的嘌呤相比,其对 O(6)-MeG 掺入具有高选择性。这种类似物对复制受损 DNA 的异常选择性为研究跨损伤 DNA 合成提供了一种新的生化工具。