University of Illinois at Urbana-Champaign, 61801, USA.
Microsc Microanal. 2010 Apr;16(2):183-93. doi: 10.1017/S1431927610000085. Epub 2010 Feb 26.
We evaluate the probe forming capability of a JEOL 2200FS transmission electron microscope equipped with a spherical aberration (Cs) probe corrector. The achievement of a real space sub-Angstrom (0.1 nm) probe for scanning transmission electron microscopy (STEM) imaging is demonstrated by acquisition and modeling of high-angle annular dark-field STEM images. We show that by optimizing the illumination system, large probe currents and large collection angles for electron energy loss spectroscopy (EELS) can be combined to yield EELS fine structure data spatially resolved to the atomic scale. We demonstrate the probe forming flexibility provided by the additional lenses in the probe corrector in several ways, including the formation of nanometer-sized parallel beams for nanoarea electron diffraction, and the formation of focused probes for convergent beam electron diffraction with a range of convergence angles. The different probes that can be formed using the probe corrected STEM opens up new applications for electron microscopy and diffraction.
我们评估了配备球形像差(Cs)校正器的 JEOL 2200FS 透射电子显微镜的探针形成能力。通过采集和模拟高角度环形暗场扫描透射电子显微镜(STEM)图像,实现了实空间亚埃(0.1nm)探针用于 STEM 成像。我们表明,通过优化照明系统,可以将大探针电流和大电子能量损失光谱(EELS)收集角结合起来,以获得空间分辨率达到原子尺度的 EELS 精细结构数据。我们通过几种方式展示了校正器中附加透镜提供的探针形成灵活性,包括形成纳米级平行束用于纳米区域电子衍射,以及形成聚焦探针用于具有一系列收敛角的会聚束电子衍射。使用校正器校正 STEM 可以形成的不同探针为电子显微镜和衍射开辟了新的应用。