Liu Jingyue
Monsanto Company, U1E, 800 North Lindbergh Boulevard, St Louis, MO 63167, USA.
J Electron Microsc (Tokyo). 2005 Jun;54(3):251-78. doi: 10.1093/jmicro/dfi034. Epub 2005 Aug 25.
Scanning transmission electron microscopy (STEM) techniques can provide imaging, diffraction and spectroscopic information, either simultaneously or in a serial manner, of the specimen with an atomic or a sub-nanometer spatial resolution. High-resolution STEM imaging, when combined with nanodiffraction, atomic resolution electron energy-loss spectroscopy and nanometer resolution X-ray energy dispersive spectroscopy techniques, is critical to the fundamental studies of importance to nanoscience and nanotechnology. The availability of sub-nanometer or sub-angstrom electron probes in a STEM instrument, due to the use of a field emission gun and aberration correctors, ensures the greatest capabilities for studies of sizes, shapes, defects, crystal and surface structures, and compositions and electronic states of nanometer-size regions of thin films, nanoparticles and nanoparticle systems. The various imaging, diffraction and spectroscopy modes available in a dedicated STEM or a field emission TEM/STEM instrument are reviewed and the application of these techniques to the study of nanoparticles and nanostructured catalysts is used as an example to illustrate the critical role of the various STEM techniques in nanotechnology and nanoscience research.
扫描透射电子显微镜(STEM)技术能够以原子或亚纳米空间分辨率,同时或串行方式提供样品的成像、衍射和光谱信息。高分辨率STEM成像与纳米衍射、原子分辨率电子能量损失谱和纳米分辨率X射线能量色散谱技术相结合,对于纳米科学和纳米技术的基础研究至关重要。由于使用了场发射枪和像差校正器,STEM仪器中可获得亚纳米或亚埃电子探针,这确保了对薄膜、纳米颗粒和纳米颗粒系统中纳米尺寸区域的尺寸、形状、缺陷、晶体和表面结构以及成分和电子态进行研究的最大能力。本文综述了专用STEM或场发射TEM/STEM仪器中可用的各种成像、衍射和光谱模式,并以这些技术在纳米颗粒和纳米结构催化剂研究中的应用为例,来说明各种STEM技术在纳米技术和纳米科学研究中的关键作用。