Suppr超能文献

研制并验证了一种用于检测烘焙工人对面筋过敏原致敏的诊断模型。

A diagnostic model for the detection of sensitization to wheat allergens was developed and validated in bakery workers.

机构信息

Environmental Epidemiology Division, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands.

出版信息

J Clin Epidemiol. 2010 Sep;63(9):1011-9. doi: 10.1016/j.jclinepi.2009.10.008. Epub 2010 Mar 1.

Abstract

OBJECTIVES

To develop and validate a prediction model to detect sensitization to wheat allergens in bakery workers.

STUDY DESIGN AND SETTING

The prediction model was developed in 867 Dutch bakery workers (development set, prevalence of sensitization 13%) and included questionnaire items (candidate predictors). First, principal component analysis was used to reduce the number of candidate predictors. Then, multivariable logistic regression analysis was used to develop the model. Internal validation and extent of optimism was assessed with bootstrapping. External validation was studied in 390 independent Dutch bakery workers (validation set, prevalence of sensitization 20%).

RESULTS

The prediction model contained the predictors nasoconjunctival symptoms, asthma symptoms, shortness of breath and wheeze, work-related upper and lower respiratory symptoms, and traditional bakery. The model showed good discrimination with an area under the receiver operating characteristic (ROC) curve area of 0.76 (and 0.75 after internal validation). Application of the model in the validation set gave a reasonable discrimination (ROC area=0.69) and good calibration after a small adjustment of the model intercept.

CONCLUSION

A simple model with questionnaire items only can be used to stratify bakers according to their risk of sensitization to wheat allergens. Its use may increase the cost-effectiveness of (subsequent) medical surveillance.

摘要

目的

开发并验证一种预测模型,以检测面包师对小麦过敏原的致敏情况。

研究设计和设置

该预测模型是在 867 名荷兰面包师(发展组,致敏率为 13%)中开发的,包括问卷项目(候选预测因子)。首先,使用主成分分析来减少候选预测因子的数量。然后,使用多变量逻辑回归分析来开发模型。通过自举法评估内部验证和过度拟合程度。在 390 名独立的荷兰面包师(验证组,致敏率为 20%)中进行了外部验证研究。

结果

预测模型包含预测因子鼻结膜炎症状、哮喘症状、呼吸急促和喘息、与工作相关的上呼吸道和下呼吸道症状以及传统面包店。该模型具有良好的区分度,接收者操作特征(ROC)曲线下面积为 0.76(内部验证后为 0.75)。该模型在验证组中的应用具有合理的区分度(ROC 面积=0.69),并且在对模型截距进行小的调整后,校准效果良好。

结论

一种仅使用问卷项目的简单模型可用于根据面包师对小麦过敏原的致敏风险对其进行分层。它的使用可能会提高(后续)医疗监测的成本效益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验