Suppr超能文献

变形链球菌对乳糖和半乳糖的利用:转运、毒性和碳分解代谢物阻遏。

Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.

机构信息

Department of Oral Biology, University of Florida, College of Dentistry, P.O. Box 100424, Gainesville, FL 32610, USA.

出版信息

J Bacteriol. 2010 May;192(9):2434-44. doi: 10.1128/JB.01624-09. Epub 2010 Feb 26.

Abstract

Abundant in milk and other dairy products, lactose is considered to have an important role in oral microbial ecology and can contribute to caries development in both adults and young children. To better understand the metabolism of lactose and galactose by Streptococcus mutans, the major etiological agent of human tooth decay, a genetic analysis of the tagatose-6-phosphate (lac) and Leloir (gal) pathways was performed in strain UA159. Deletion of each gene in the lac operon caused various alterations in expression of a P(lacA)-cat promoter fusion and defects in growth on either lactose (lacA, lacB, lacF, lacE, and lacG), galactose (lacA, lacB, lacD, and lacG) or both sugars (lacA, lacB, and lacG). Failure to grow in the presence of galactose or lactose by certain lac mutants appeared to arise from the accumulation of intermediates of galactose metabolism, particularly galatose-6-phosphate. The glucose- and lactose-PTS permeases, EII(Man) and EII(Lac), respectively, were shown to be the only effective transporters of galactose in S. mutans. Furthermore, disruption of manL, encoding EIIAB(Man), led to increased resistance to glucose-mediated CCR when lactose was used to induce the lac operon, but resulted in reduced lac gene expression in cells growing on galactose. Collectively, the results reveal a remarkably high degree of complexity in the regulation of lactose/galactose catabolism.

摘要

乳糖在牛奶和其他乳制品中含量丰富,被认为在口腔微生物生态中具有重要作用,可导致成人和儿童龋齿的发生。为了更好地了解变异链球菌(导致人类龋齿的主要病原体)对乳糖和半乳糖的代谢,对其 tagatose-6-phosphate(lac)和 Leloir(gal)途径进行了基因分析。lac 操纵子中每个基因的缺失导致 P(lacA)-cat 启动子融合的表达发生各种改变,并在乳糖(lacA、lacB、lacF、lacE 和 lacG)、半乳糖(lacA、lacB、lacD 和 lacG)或两种糖(lacA、lacB 和 lacG)上的生长缺陷。某些 lac 突变体在半乳糖或乳糖存在下无法生长,似乎是由于半乳糖代谢的中间产物,特别是半乳糖-6-磷酸的积累所致。葡萄糖和乳糖 PTS 透性酶,分别为 EII(Man)和 EII(Lac),被证明是变异链球菌中半乳糖的唯一有效转运体。此外,编码 EIIAB(Man)的 manL 的破坏导致在诱导 lac 操纵子时,当乳糖被用来诱导 lac 操纵子时,细胞对葡萄糖介导的 CCR 的抗性增加,但在细胞生长在半乳糖上时,lac 基因的表达减少。总的来说,这些结果揭示了乳糖/半乳糖分解代谢的调控具有极高的复杂性。

相似文献

1
Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression.
J Bacteriol. 2010 May;192(9):2434-44. doi: 10.1128/JB.01624-09. Epub 2010 Feb 26.
2
Galactose metabolism by Streptococcus mutans.
Appl Environ Microbiol. 2004 Oct;70(10):6047-52. doi: 10.1128/AEM.70.10.6047-6052.2004.
4
Two gene clusters coordinate galactose and lactose metabolism in Streptococcus gordonii.
Appl Environ Microbiol. 2012 Aug;78(16):5597-605. doi: 10.1128/AEM.01393-12. Epub 2012 Jun 1.
5
Coordinated Regulation of the EII and Operons of Streptococcus mutans by Global and Fructose-Specific Pathways.
Appl Environ Microbiol. 2017 Oct 17;83(21). doi: 10.1128/AEM.01403-17. Print 2017 Nov 1.
7
Preferred Hexoses Influence Long-Term Memory in and Induction of Lactose Catabolism by Streptococcus mutans.
Appl Environ Microbiol. 2018 Jul 2;84(14). doi: 10.1128/AEM.00864-18. Print 2018 Jul 15.

引用本文的文献

1
Mechanisms Underlying the Effects of Secretory Protein on Biological Characteristics and Virulence of .
Microorganisms. 2025 Mar 28;13(4):774. doi: 10.3390/microorganisms13040774.
2
Fructose activates a stress response shared by methylglyoxal and hydrogen peroxide in .
mBio. 2025 May 14;16(5):e0048525. doi: 10.1128/mbio.00485-25. Epub 2025 Apr 17.
3
The gastric microbiome altered by A4GNT deficiency in mice.
Front Microbiol. 2025 Feb 12;16:1541800. doi: 10.3389/fmicb.2025.1541800. eCollection 2025.
4
Characterization of galactose catabolic pathways in and identification of a major galactose: phosphotransferase importer.
J Bacteriol. 2024 Oct 24;206(10):e0015524. doi: 10.1128/jb.00155-24. Epub 2024 Sep 19.
5
Glycerol metabolism contributes to competition by oral streptococci through production of hydrogen peroxide.
J Bacteriol. 2024 Sep 19;206(9):e0022724. doi: 10.1128/jb.00227-24. Epub 2024 Aug 22.
6
Genetic modification of by natural transformation.
mSphere. 2024 Jul 30;9(7):e0021424. doi: 10.1128/msphere.00214-24. Epub 2024 Jun 21.
7
Examination of the Structure and Formation Streptococcus mutans Biofilm Induced by Glucose, Lactose, Soy Protein, and Iron.
Eur J Dent. 2024 Jul;18(3):834-840. doi: 10.1055/s-0043-1776121. Epub 2024 Mar 31.
8
Genomic Characterization of Wild Strains Reveals Low Diversity but Strong Typicity.
Microorganisms. 2024 Mar 2;12(3):512. doi: 10.3390/microorganisms12030512.
9
Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans.
J Oral Microbiol. 2023 Jun 18;15(1):2225257. doi: 10.1080/20002297.2023.2225257. eCollection 2023.
10
Exopolysaccharides metabolism and cariogenesis of biofilm regulated by antisense RNA.
J Oral Microbiol. 2023 Apr 28;15(1):2204250. doi: 10.1080/20002297.2023.2204250. eCollection 2023.

本文引用的文献

4
Transcriptional regulation of the cellobiose operon of Streptococcus mutans.
J Bacteriol. 2009 Apr;191(7):2153-62. doi: 10.1128/JB.01641-08. Epub 2009 Jan 23.
5
Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans.
Mol Microbiol. 2008 Oct;70(1):197-208. doi: 10.1111/j.1365-2958.2008.06403.x. Epub 2008 Aug 11.
6
Carbon catabolite repression in bacteria: many ways to make the most out of nutrients.
Nat Rev Microbiol. 2008 Aug;6(8):613-24. doi: 10.1038/nrmicro1932.
7
The mechanisms of carbon catabolite repression in bacteria.
Curr Opin Microbiol. 2008 Apr;11(2):87-93. doi: 10.1016/j.mib.2008.02.007. Epub 2008 Mar 21.
8
CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans.
J Bacteriol. 2008 Apr;190(7):2340-9. doi: 10.1128/JB.01237-07. Epub 2008 Jan 25.
10
Construction of a counterselection-based in-frame deletion system for genetic studies of Streptococcus mutans.
Oral Microbiol Immunol. 2007 Apr;22(2):95-102. doi: 10.1111/j.1399-302X.2007.00329.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验