School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
Appl Environ Microbiol. 2010 Apr;76(8):2425-32. doi: 10.1128/AEM.03066-09. Epub 2010 Feb 26.
Shewanella oneidensis MR-1 respires a wide range of anaerobic electron acceptors, including sparingly soluble Fe(III) oxides. In the present study, S. oneidensis was found to produce Fe(III)-solubilizing organic ligands during anaerobic Fe(III) oxide respiration, a respiratory strategy postulated to destabilize Fe(III) and produce more readily reducible soluble organic Fe(III). In-frame gene deletion mutagenesis, siderophore detection assays, and voltammetric techniques were combined to determine (i) if the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration were synthesized via siderophore biosynthesis systems and (ii) if the Fe(III)-siderophore reductase was required for respiration of soluble organic Fe(III) as an anaerobic electron acceptor. Genes predicted to encode the siderophore (hydroxamate) biosynthesis system (SO3030 to SO3032), the Fe(III)-hydroxamate receptor (SO3033), and the Fe(III)-hydroxamate reductase (SO3034) were identified in the S. oneidensis genome, and corresponding in-frame gene deletion mutants were constructed. DeltaSO3031 was unable to synthesize siderophores or produce soluble organic Fe(III) during aerobic respiration yet retained the ability to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. DeltaSO3034 retained the ability to synthesize siderophores during aerobic respiration and to solubilize and respire Fe(III) at wild-type rates during anaerobic Fe(III) oxide respiration. These findings indicate that the Fe(III)-solubilizing organic ligands produced by S. oneidensis during anaerobic Fe(III) oxide respiration are not synthesized via the hydroxamate biosynthesis system and that the Fe(III)-hydroxamate reductase is not essential for respiration of Fe(III)-citrate or Fe(III)-nitrilotriacetic acid (NTA) as an anaerobic electron acceptor.
希瓦氏菌属能够呼吸多种厌氧电子受体,包括难溶性三价铁氧化物。在本研究中,发现希瓦氏菌属在厌氧三价铁氧化物呼吸过程中产生了溶解三价铁的有机配体,这种呼吸策略被认为可以使三价铁不稳定,并产生更易还原的可溶性有机三价铁。通过基因框内缺失突变、铁载体检测试验和伏安技术相结合,确定了(i)希瓦氏菌属在厌氧三价铁氧化物呼吸过程中产生的溶解三价铁的有机配体是否通过铁载体生物合成系统合成;(ii)铁载体还原酶是否是作为厌氧电子受体呼吸可溶性有机三价铁所必需的。在希瓦氏菌属基因组中鉴定出编码铁载体(羟肟酸)生物合成系统(SO3030 到 SO3032)、三价铁-羟肟酸受体(SO3033)和三价铁-羟肟酸还原酶(SO3034)的基因,构建了相应的基因框内缺失突变体。DeltaSO3031 不能在有氧呼吸中合成铁载体或产生可溶性有机三价铁,但在厌氧三价铁氧化物呼吸中仍以野生型速率溶解和呼吸三价铁。DeltaSO3034 在有氧呼吸中仍能合成铁载体,并以野生型速率在厌氧三价铁氧化物呼吸中溶解和呼吸三价铁。这些发现表明,希瓦氏菌属在厌氧三价铁氧化物呼吸过程中产生的溶解三价铁的有机配体不是通过羟肟酸生物合成系统合成的,并且铁载体还原酶不是呼吸三价铁-柠檬酸盐或三价铁-氮三乙酸(NTA)作为厌氧电子受体所必需的。