Suppr超能文献

厚伽马射线探测器中三维相互作用位置的机器学习估计校准方法

Calibration Method for ML Estimation of 3D Interaction Position in a Thick Gamma-Ray Detector.

作者信息

Hunter William C J, Barrett Harrison H, Furenlid Lars R

机构信息

Department of Radiology, University of Washington, Seattle, WA 98195 USA (

出版信息

IEEE Trans Nucl Sci. 2009 Feb 10;56(1):189-196. doi: 10.1109/TNS.2008.2010704.

Abstract

High-energy (> 100 keV) photon detectors are often made thick relative to their lateral resolution in order to improve their photon-detection efficiency. To avoid issues of parallax and increased signal variance that result from random interaction depth, we must determine the 3D interaction position in the imaging detector. With this goal in mind, we examine a method of calibrating response statistics of a thick-detector gamma camera to produce a maximum-likelihood estimate of 3D interaction position. We parameterize the mean detector response as a function of 3D position, and we estimate these parameters by maximizing their likelihood given prior knowledge of the pathlength distribution and a complete list of camera signals for an ensemble of gamma-ray interactions. Furthermore, we describe an iterative method for removing multiple-interaction events from our calibration data and for refining our calibration of the mean detector response to single interactions. We demonstrate this calibration method with simulated gamma-camera data. We then show that the resulting calibration is accurate and can be used to produce unbiased estimates of 3D interaction position.

摘要

高能(> 100 keV)光子探测器相对于其横向分辨率通常做得较厚,以提高其光子探测效率。为避免因随机相互作用深度而导致的视差问题和信号方差增加,我们必须确定成像探测器中的三维相互作用位置。出于这一目的,我们研究了一种校准厚探测器伽马相机响应统计数据的方法,以生成三维相互作用位置的最大似然估计。我们将探测器平均响应参数化为三维位置的函数,并通过在已知路径长度分布和一组伽马射线相互作用的相机信号完整列表的先验知识的情况下最大化其似然性来估计这些参数。此外,我们描述了一种迭代方法,用于从校准数据中去除多次相互作用事件,并完善我们对探测器对单次相互作用的平均响应的校准。我们用模拟伽马相机数据演示了这种校准方法。然后我们表明,所得校准是准确的,可用于生成三维相互作用位置的无偏估计。

相似文献

1
Calibration Method for ML Estimation of 3D Interaction Position in a Thick Gamma-Ray Detector.
IEEE Trans Nucl Sci. 2009 Feb 10;56(1):189-196. doi: 10.1109/TNS.2008.2010704.
2
Method of Calibrating Response Statistics for ML Estimation of 3D Interaction Position in a Thick-Detector Gamma Camera.
IEEE Nucl Sci Symp Conf Rec (1997). 2007;6:4359-4363. doi: 10.1109/NSSMIC.2007.4437079.
3
Characterization of highly multiplexed monolithic PET / gamma camera detector modules.
Phys Med Biol. 2018 Mar 29;63(7):075017. doi: 10.1088/1361-6560/aab380.
4
List-mode MLEM Image Reconstruction from 3D ML Position Estimates.
IEEE Nucl Sci Symp Conf Rec (1997). 2010 Oct;2010:2643-2647. doi: 10.1109/NSSMIC.2010.5874269.
6
Cherenkov radiation-based three-dimensional position-sensitive PET detector: A Monte Carlo study.
Med Phys. 2018 May;45(5):1999-2008. doi: 10.1002/mp.12851. Epub 2018 Mar 23.
7
Maximum-likelihood Estimation of 3D Event Position in Monolithic Scintillation Crystals: Experimental Results.
IEEE Nucl Sci Symp Conf Rec (1997). 2007;5:3691-3694. doi: 10.1109/NSSMIC.2007.4436923. Epub 2007 Oct 26.
8
3D in-system calibration method for PET detectors.
Med Phys. 2025 Jan;52(1):232-245. doi: 10.1002/mp.17475. Epub 2024 Nov 6.
9
Fisher Information Analysis of Depth-of-Interaction Estimation in Double-Sided Strip Detectors.
IEEE Trans Nucl Sci. 2014 Jun;61(3):1243-1251. doi: 10.1109/TNS.2014.2317454.
10
Performance of long rectangular semi-monolithic scintillator PET detectors.
Med Phys. 2019 Apr;46(4):1608-1619. doi: 10.1002/mp.13432. Epub 2019 Feb 20.

引用本文的文献

1
Timing, Energy, and 3-D Spatial Resolution of the BING PET Detector Module.
IEEE Trans Radiat Plasma Med Sci. 2023 Jan;7(1):1-10. doi: 10.1109/TRPMS.2022.3187955. Epub 2022 Jul 4.
2
Performance Characteristics of a Dual-Sided Position-Sensitive Sparse-Sensor Detector for Gamma-ray Imaging.
IEEE Trans Radiat Plasma Med Sci. 2022 Apr;6(4):385-392. doi: 10.1109/trpms.2021.3087465. Epub 2021 Jun 7.
4
Quantifying the loss of information from binning list-mode data.
J Opt Soc Am A Opt Image Sci Vis. 2020 Mar 1;37(3):450-457. doi: 10.1364/JOSAA.375317.
5
Towards continuous-to-continuous 3D imaging in the real world.
Phys Med Biol. 2019 Sep 18;64(18):185007. doi: 10.1088/1361-6560/ab3fb5.
6
Evaluation of event position reconstruction in monolithic crystals that are optically coupled.
Phys Med Biol. 2016 Dec 7;61(23):8298-8320. doi: 10.1088/0031-9155/61/23/8298. Epub 2016 Nov 3.
7
Improving Depth, Energy and Timing Estimation in PET Detectors with Deconvolution and Maximum Likelihood Pulse Shape Discrimination.
IEEE Trans Med Imaging. 2016 Nov;35(11):2436-2446. doi: 10.1109/TMI.2016.2577539. Epub 2016 Jun 7.
8
Design Considerations for the Next-Generation MAPMT-Based Monolithic Scintillation Camera.
Proc SPIE Int Soc Opt Eng. 2011 Aug 21;8143. doi: 10.1117/12.899478.
9
Event Processing for Modular Gamma Cameras with Tiled Multi-Anode Photomultiplier Tubes.
IEEE Nucl Sci Symp Conf Rec (1997). 2012 Oct-Nov;2012:3269-3272. doi: 10.1109/NSSMIC.2012.6551745.
10
A Prototype Detector for a Novel High-Resolution PET System: BazookaPET.
IEEE Nucl Sci Symp Conf Rec (1997). 2012 Oct-Nov;2012:2123-2127. doi: 10.1109/NSSMIC.2012.6551486.

本文引用的文献

1
Real-time Data Acquisition and Maximum-Likelihood Estimation for Gamma Cameras.
IEEE NPSS Real Time Conf. 2005 Jun;2005:498-501. doi: 10.1109/RTC.2005.1547506.
2
Maximum-likelihood Estimation of 3D Event Position in Monolithic Scintillation Crystals: Experimental Results.
IEEE Nucl Sci Symp Conf Rec (1997). 2007;5:3691-3694. doi: 10.1109/NSSMIC.2007.4436923. Epub 2007 Oct 26.
3
New Directions for dMiCE - a Depth-of-Interaction Detector Design for PET Scanners.
IEEE Nucl Sci Symp Conf Rec (1997). 2007;5:3798-3802. doi: 10.1109/NSSMIC.2007.4436948.
4
Maximum likelihood positioning in the scintillation camera using depth of interaction.
IEEE Trans Med Imaging. 1993;12(1):101-7. doi: 10.1109/42.222673.
5
Depth of interaction decoding of a continuous crystal detector module.
Phys Med Biol. 2007 Apr 21;52(8):2213-28. doi: 10.1088/0031-9155/52/8/012. Epub 2007 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验