Department of Radiation Science and Technology, Delft University of Technology, Delft, The Netherlands.
Free Bee International, Gouda, The Netherlands.
Med Phys. 2024 Jul;51(7):4696-4708. doi: 10.1002/mp.17043. Epub 2024 Apr 3.
Gamma camera imaging, including single photon emission computed tomography (SPECT), is crucial for research, diagnostics, and radionuclide therapy. Gamma cameras are predominantly based on arrays of photon multipliers tubes (PMTs) that read out NaI(Tl) scintillation crystals. In this way, standard gamma cameras can localize ɣ-rays with energies typically ranging from 30 to 360 keV. In the last decade, there has been an increasing interest towards gamma imaging outside this conventional clinical energy range, for example, for theragnostic applications and preclinical multi-isotope positron emission tomography (PET) and PET-SPECT. However, standard gamma cameras are typically equipped with 9.5 mm thick NaI(Tl) crystals which can result in limited sensitivity for these higher energies.
Here we investigate to what extent thicker scintillators can improve the photopeak sensitivity for higher energy isotopes while attempting to maintain spatial resolution.
Using Monte Carlo simulations, we analyzed multiple PMT-based configurations of gamma detectors with monolithic NaI (Tl) crystals of 20 and 40 mm thickness. Optimized light guide thickness together with 2-inch round, 3-inch round, 60 × 60 mm square, and 76 × 76 mm square PMTs were tested. For each setup, we assessed photopeak sensitivity, energy resolution, spatial, and depth-of-interaction (DoI) resolution for conventional (140 keV) and high (511 keV) energy ɣ using a maximum-likelihood algorithm. These metrics were compared to those of a "standard" 9.5 mm-thick crystal detector with 3-inch round PMTs.
Estimated photopeak sensitivities for 511 keV were 27% and 53% for 20 and 40 mm thick scintillators, which is respectively, 2.2 and 4.4 times higher than for 9.5 mm thickness. In most cases, energy resolution benefits from using square PMTs instead of round ones, regardless of their size. Lateral and DoI spatial resolution are best for smaller PMTs (2-inch round and 60 × 60 mm square) which outperform the more cost-effective larger PMT setups (3-inch round and 76 × 76 mm square), while PMT layout and shape have negligible (< 10%) effect on resolution. Best spatial resolution was obtained with 60 × 60 mm PMTs; for 140 keV, lateral resolution was 3.5 mm irrespective of scintillator thickness, improving to 2.8 and 2.9 mm for 511 keV with 20 and 40 mm thick crystals, respectively. Using the 3-inch round PMTs, lateral resolutions of 4.5 and 3.9 mm for 140 keV and of 3.5 and 3.7 mm for 511 keV were obtained with 20 and 40 mm thick crystals respectively, indicating a moderate performance degradation compared to the 3.5 and 2.9 mm resolution obtained by the standard detector for 140 and 511 keV. Additionally, DoI resolution for 511 keV was 7.0 and 5.6 mm with 20 and 40 mm crystals using 60 × 60 mm square PMTs, while with 3-inch round PMTs 12.1 and 5.9 mm were obtained.
Depending on PMT size and shape, the use of thicker scintillator crystals can substantially improve detector sensitivity at high gamma energies, while spatial resolution is slightly improved or mildly degraded compared to standard crystals.
伽马相机成像,包括单光子发射计算机断层扫描(SPECT),对于研究、诊断和放射性核素治疗至关重要。伽马相机主要基于光子倍增管(PMT)阵列,这些 PMT 可以读取碘化钠(Tl)闪烁晶体。通过这种方式,标准伽马相机可以定位能量通常在 30 到 360keV 之间的γ射线。在过去的十年中,人们对传统临床能量范围之外的伽马成像越来越感兴趣,例如用于治疗诊断和临床前多同位素正电子发射断层扫描(PET)和 PET-SPECT。然而,标准的伽马相机通常配备 9.5 毫米厚的碘化钠(Tl)晶体,这可能会导致这些更高能量的灵敏度有限。
本文研究了增加闪烁体厚度在保持空间分辨率的同时,对更高能量同位素的光峰灵敏度的提高程度。
使用蒙特卡罗模拟,我们分析了具有 20 和 40 毫米厚的整体式碘化钠(Tl)晶体的基于 PMT 的多种伽马探测器配置。优化的导光管厚度与 2 英寸圆形、3 英寸圆形、60×60 毫米方形和 76×76 毫米方形 PMT 一起进行了测试。对于每个设置,我们使用最大似然算法评估了常规(140keV)和高(511keV)能量γ的光峰灵敏度、能量分辨率、空间分辨率和深度-交互(DoI)分辨率。将这些指标与具有 3 英寸圆形 PMT 的“标准”9.5 毫米厚晶体探测器进行了比较。
估计的 511keV 光峰灵敏度对于 20 和 40 毫米厚的闪烁体分别为 27%和 53%,分别是 9.5 毫米厚的 2.2 和 4.4 倍。在大多数情况下,使用方形 PMT 而不是圆形 PMT 可以改善能量分辨率,而与 PMT 的大小无关。横向和 DOI 空间分辨率对于较小的 PMT(2 英寸圆形和 60×60 毫米方形)最佳,优于更经济高效的较大 PMT 配置(3 英寸圆形和 76×76 毫米方形),而 PMT 布局和形状对分辨率的影响可忽略不计(<10%)。最佳空间分辨率是使用 60×60 毫米 PMT 获得的;对于 140keV,横向分辨率无论闪烁体厚度如何均为 3.5 毫米,对于 511keV,20 和 40 毫米厚的晶体分别提高到 2.8 和 2.9 毫米。使用 3 英寸圆形 PMT,对于 140keV 的横向分辨率分别为 4.5 和 3.9 毫米,对于 511keV 的横向分辨率分别为 3.5 和 3.7 毫米,与标准探测器对于 140 和 511keV 获得的 3.5 和 2.9 毫米分辨率相比,性能略有下降。此外,对于 511keV,使用 60×60 毫米方形 PMT 时,晶体厚度分别为 7.0 和 5.6 毫米,而使用 3 英寸圆形 PMT 时,分别为 12.1 和 5.9 毫米。
根据 PMT 的大小和形状,使用更厚的闪烁晶体可以大大提高高γ能量下的探测器灵敏度,同时与标准晶体相比,空间分辨率略有提高或略有降低。