文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

K-均值和模糊 c-均值在热红外乳腺图像颜色分割中的应用。

Application of K- and fuzzy c-means for color segmentation of thermal infrared breast images.

机构信息

Electrical and Computer Engineering Department, Isfahan University of Technology, Isfahan, Iran.

出版信息

J Med Syst. 2010 Feb;34(1):35-42. doi: 10.1007/s10916-008-9213-1.


DOI:10.1007/s10916-008-9213-1
PMID:20192053
Abstract

Color segmentation of infrared thermal images is an important factor in detecting the tumor region. The cancerous tissue with angiogenesis and inflammation emits temperature pattern different from the healthy one. In this paper, two color segmentation techniques, K-means and fuzzy c-means for color segmentation of infrared (IR) breast images are modeled and compared. Using the K-means algorithm in Matlab, some empty clusters may appear in the results. Fuzzy c-means is preferred because the fuzzy nature of IR breast images helps the fuzzy c-means segmentation to provide more accurate results with no empty cluster. Since breasts with malignant tumors have higher temperature than healthy breasts and even breasts with benign tumors, in this study, we look for detecting the hottest regions of abnormal breasts which are the suspected regions. The effect of IR camera sensitivity on the number of clusters in segmentation is also investigated. When the camera is ultra sensitive the number of clusters being considered may be increased.

摘要

红外热图像的颜色分割是检测肿瘤区域的一个重要因素。有血管生成和炎症的癌变组织会发出与健康组织不同的温度模式。在本文中,我们建立并比较了两种用于红外(IR)乳腺图像颜色分割的技术,K-均值和模糊 C-均值。使用 Matlab 中的 K-均值算法,结果中可能会出现一些空聚类。由于 IR 乳腺图像的模糊性质有助于模糊 C-均值分割提供更准确的结果且没有空聚类,因此我们更喜欢使用模糊 C-均值。由于恶性肿瘤的乳房比健康乳房甚至良性肿瘤的乳房温度更高,因此在本研究中,我们寻找检测异常乳房的最热区域,即可疑区域。还研究了 IR 相机灵敏度对分割中聚类数量的影响。当相机超灵敏时,可考虑的聚类数量可能会增加。

相似文献

[1]
Application of K- and fuzzy c-means for color segmentation of thermal infrared breast images.

J Med Syst. 2010-2

[2]
Rapid extraction of the hottest or coldest regions of medical thermographic images.

Med Biol Eng Comput. 2018-8-20

[3]
Segmentation and landmark identification in infrared images of the human body.

Conf Proc IEEE Eng Med Biol Soc. 2006

[4]
Thermal Signal Analysis for Breast Cancer Risk Verification.

Stud Health Technol Inform. 2015

[5]
A fuzzy c-means (FCM)-based approach for computerized segmentation of breast lesions in dynamic contrast-enhanced MR images.

Acad Radiol. 2006-1

[6]
A mean shift based fuzzy c-means algorithm for image segmentation.

Annu Int Conf IEEE Eng Med Biol Soc. 2008

[7]
Level set method for segmentation of infrared breast thermograms.

EXCLI J. 2014-3-13

[8]
[A new algorithm for magnetic resonance image segmentation based on fuzzy kerne1 clustering].

Nan Fang Yi Ke Da Xue Xue Bao. 2008-4

[9]
Multispectral MR images segmentation based on fuzzy knowledge and modified seeded region growing.

Magn Reson Imaging. 2011-11-30

[10]
Computerized segmentation and characterization of breast lesions in dynamic contrast-enhanced MR images using fuzzy c-means clustering and snake algorithm.

Comput Math Methods Med. 2012-8-21

引用本文的文献

[1]
Application of infrared thermography in computer aided diagnosis.

Infrared Phys Technol. 2014-9

[2]
Three-dimensional visualization of microvasculature from few-projection data using a novel CT reconstruction algorithm for propagation-based X-ray phase-contrast imaging.

Biomed Opt Express. 2019-12-20

[3]
Breast Cancer Identification via Thermography Image Segmentation with a Gradient Vector Flow and a Convolutional Neural Network.

J Healthc Eng. 2019-11-3

[4]
Rapid extraction of the hottest or coldest regions of medical thermographic images.

Med Biol Eng Comput. 2018-8-20

[5]
Near-Infrared Visual Differentiation in Normal and Abnormal Breast Using Hemoglobin Concentrations.

J Lasers Med Sci. 2018

[6]
Accuracy and Reliability of Infrared Thermography in Assessment of the Breasts of Women Affected by Cancer.

J Med Syst. 2017-5

[7]
Parameter estimation of breast tumour using dynamic neural network from thermal pattern.

J Adv Res. 2016-11

[8]
Thermography based breast cancer detection using texture features and minimum variance quantization.

EXCLI J. 2014-11-4

[9]
Level set method for segmentation of infrared breast thermograms.

EXCLI J. 2014-3-13

[10]
Analysis of breast thermograms using Gabor wavelet anisotropy index.

J Med Syst. 2014-9

本文引用的文献

[1]
Infrared Imaging of the Breast: Initial Reappraisal Using High-Resolution Digital Technology in 100 Successive Cases of Stage I and II Breast Cancer.

Breast J. 1998-7

[2]
Analysis of tissue and arterial blood temperatures in the resting human forearm.

J Appl Physiol. 1948-8

[3]
A study of efficiency and accuracy in the transformation from RGB to CIELAB color space.

IEEE Trans Image Process. 1997

[4]
Use of a thermocouple for malignant tumor detection. Investigating temperature difference as a diagnostic criterion.

IEEE Eng Med Biol Mag. 2008

[5]
Genetic K-means algorithm.

IEEE Trans Syst Man Cybern B Cybern. 1999

[6]
Advanced integrated technique in breast cancer thermography.

J Med Eng Technol. 2008

[7]
Implications of surface temperatures in the diagnosis of breast cancer.

Can Med Assoc J. 1956-8-15

[8]
A framework for early discovery of breast tumor using thermography with artificial neural network.

Breast J. 2003

[9]
Circadian rhythm chaos: a new breast cancer marker.

Int J Fertil Womens Med. 2001

[10]
Effect of blood flow, tumour and cold stress in a female breast: a novel time-accurate computer simulation.

Proc Inst Mech Eng H. 2001

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索