Electrical and Computer Engineering Department, Isfahan University of Technology, Isfahan, Iran.
J Med Syst. 2010 Feb;34(1):35-42. doi: 10.1007/s10916-008-9213-1.
Color segmentation of infrared thermal images is an important factor in detecting the tumor region. The cancerous tissue with angiogenesis and inflammation emits temperature pattern different from the healthy one. In this paper, two color segmentation techniques, K-means and fuzzy c-means for color segmentation of infrared (IR) breast images are modeled and compared. Using the K-means algorithm in Matlab, some empty clusters may appear in the results. Fuzzy c-means is preferred because the fuzzy nature of IR breast images helps the fuzzy c-means segmentation to provide more accurate results with no empty cluster. Since breasts with malignant tumors have higher temperature than healthy breasts and even breasts with benign tumors, in this study, we look for detecting the hottest regions of abnormal breasts which are the suspected regions. The effect of IR camera sensitivity on the number of clusters in segmentation is also investigated. When the camera is ultra sensitive the number of clusters being considered may be increased.
红外热图像的颜色分割是检测肿瘤区域的一个重要因素。有血管生成和炎症的癌变组织会发出与健康组织不同的温度模式。在本文中,我们建立并比较了两种用于红外(IR)乳腺图像颜色分割的技术,K-均值和模糊 C-均值。使用 Matlab 中的 K-均值算法,结果中可能会出现一些空聚类。由于 IR 乳腺图像的模糊性质有助于模糊 C-均值分割提供更准确的结果且没有空聚类,因此我们更喜欢使用模糊 C-均值。由于恶性肿瘤的乳房比健康乳房甚至良性肿瘤的乳房温度更高,因此在本研究中,我们寻找检测异常乳房的最热区域,即可疑区域。还研究了 IR 相机灵敏度对分割中聚类数量的影响。当相机超灵敏时,可考虑的聚类数量可能会增加。
Med Biol Eng Comput. 2018-8-20
Conf Proc IEEE Eng Med Biol Soc. 2006
Stud Health Technol Inform. 2015
Annu Int Conf IEEE Eng Med Biol Soc. 2008
EXCLI J. 2014-3-13
Nan Fang Yi Ke Da Xue Xue Bao. 2008-4
Magn Reson Imaging. 2011-11-30
Infrared Phys Technol. 2014-9
Med Biol Eng Comput. 2018-8-20
EXCLI J. 2014-3-13
J Med Syst. 2014-9
J Appl Physiol. 1948-8
IEEE Trans Image Process. 1997
IEEE Trans Syst Man Cybern B Cybern. 1999
J Med Eng Technol. 2008
Can Med Assoc J. 1956-8-15
Int J Fertil Womens Med. 2001