Suppr超能文献

基于热成像技术的乳腺癌检测:利用纹理特征和最小方差量化方法

Thermography based breast cancer detection using texture features and minimum variance quantization.

作者信息

Milosevic Marina, Jankovic Dragan, Peulic Aleksandar

机构信息

Department of Computer Engineering, Faculty of Technical Sciences, University of Kragujevac, Serbia.

Department of Computer Science, Faculty of Electronic Engineering, University of Nis, Serbia.

出版信息

EXCLI J. 2014 Nov 4;13:1204-15. eCollection 2014.

Abstract

In this paper, we present a system based on feature extraction techniques and image segmentation techniques for detecting and diagnosing abnormal patterns in breast thermograms. The proposed system consists of three major steps: feature extraction, classification into normal and abnormal pattern and segmentation of abnormal pattern. Computed features based on gray-level co-occurrence matrices are used to evaluate the effectiveness of textural information possessed by mass regions. A total of 20 GLCM features are extracted from thermograms. The ability of feature set in differentiating abnormal from normal tissue is investigated using a Support Vector Machine classifier, Naive Bayes classifier and K-Nearest Neighbor classifier. To evaluate the classification performance, five-fold cross validation method and Receiver operating characteristic analysis was performed. The verification results show that the proposed algorithm gives the best classification results using K-Nearest Neighbor classifier and a accuracy of 92.5%. Image segmentation techniques can play an important role to segment and extract suspected hot regions of interests in the breast infrared images. Three image segmentation techniques: minimum variance quantization, dilation of image and erosion of image are discussed. The hottest regions of thermal breast images are extracted and compared to the original images. According to the results, the proposed method has potential to extract almost exact shape of tumors.

摘要

在本文中,我们提出了一种基于特征提取技术和图像分割技术的系统,用于检测和诊断乳腺热图中的异常模式。所提出的系统包括三个主要步骤:特征提取、分类为正常和异常模式以及异常模式的分割。基于灰度共生矩阵计算的特征用于评估肿块区域所具有的纹理信息的有效性。从热图中总共提取了20个灰度共生矩阵特征。使用支持向量机分类器、朴素贝叶斯分类器和K近邻分类器研究了特征集区分异常组织和正常组织的能力。为了评估分类性能,进行了五折交叉验证方法和接收器操作特性分析。验证结果表明,所提出的算法使用K近邻分类器给出了最佳分类结果,准确率为92.5%。图像分割技术在分割和提取乳腺红外图像中可疑的感兴趣热区方面可以发挥重要作用。讨论了三种图像分割技术:最小方差量化、图像膨胀和图像腐蚀。提取了乳腺热图像中最热的区域并与原始图像进行比较。根据结果,所提出的方法有潜力提取几乎精确的肿瘤形状。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ea3/4464488/9c883301282e/EXCLI-13-1204-g-001.jpg

相似文献

引用本文的文献

10
Infrared thermography as a tool to detect hoof lesions in sheep.红外热成像作为检测绵羊蹄部病变的工具。
Transl Anim Sci. 2018 Dec 8;3(1):577-588. doi: 10.1093/tas/txy132. eCollection 2019 Jan.

本文引用的文献

7
Statistical analysis of healthy and malignant breast thermography.健康与恶性乳腺热成像的统计分析。
J Med Eng Technol. 2001 Nov-Dec;25(6):253-63. doi: 10.1080/03091900110086642.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验