Department of Chemistry, Hebei University of Engineering, Handan, 056038 Hebei, China.
J Chem Phys. 2010 Feb 28;132(8):084303. doi: 10.1063/1.3326225.
We report the bonding interactions within [R(H)B=B(H)] and [R] (R=:C(NHCH)(2)) as a ligand in a newly synthesized stable neutral diborene. By using theoretical analyses, we have found the nature of the B-C(carbene) bonding, and, more importantly, the key to realize multiple bonds for chemical elements. With character of almost equal covalency and ionicity, the stabilizing orbital interaction term, DeltaE(orb), of B-C(carbene), is mainly given by sigma-symmetry orbital interactions; the donor-acceptor interaction is weak and contributes small to DeltaE(orb). In the weak donor-acceptor interaction, the B-->C(carbene) pi backdonation is stronger than the B<--C(carbene) sigma donation. Thus, in effect, the bond emerges in the B(delta+)-C(carbene)(delta-) dipole. Inspection of the correlation lines of the orbital correlation diagram for the B-C(carbene) bonding indicates that the strength of the bonding orbitals in the central BB unit is weakened due to the coordination of the carbenes, and the center is unstabilized by the carbene ligand. This is contrary to the conventional view on the mechanism of coordination and the Dewar-Chatt-Duncanson model. However this unstabilizing effect should be responsible for the stability of the B=B double bond in the stable neutral diborene. This is because the very short bond lengths arising from multiple bonds will lead to a very strong Pauli repulsion, and, ultimately, destruction of chemical bonds. It can therefore be concluded that, actually, to prevent the very short bond lengths is the true reason for the successful realization of multiple bonds for main-group elements such as boron.
我们报告了 [R(H)B=B(H)] 和 [R](R=:C(NHCH)(2))作为一个新合成的稳定中性二硼烯中的配体的键合相互作用。通过理论分析,我们发现了 B-C(卡宾)键的本质,更重要的是,实现化学元素多重键的关键。B-C(卡宾)具有几乎相等的共价性和离子性,稳定轨道相互作用项 DeltaE(orb) 主要由 sigma 对称性轨道相互作用给出;供体-受体相互作用较弱,对 DeltaE(orb) 的贡献较小。在弱供体-受体相互作用中,B-->C(卡宾)pi 反馈作用强于 B<--C(卡宾)sigma 供体。因此,实际上,键出现在 B(delta+)-C(carbene)(delta-)偶极中。对 B-C(卡宾)键轨道相关图的相关线进行检查表明,由于卡宾的配位,中心 BB 单元中键轨道的强度减弱,中心不受卡宾配体稳定。这与传统的配位机制和 Dewar-Chatt-Duncanson 模型的观点相反。然而,这种去稳定效应应该负责稳定中性二硼烯中 B=B 双键的稳定性。这是因为多重键导致的非常短的键长将导致非常强的 Pauli 排斥,最终破坏化学键。因此,可以得出结论,实际上,防止非常短的键长是主族元素如硼成功实现多重键的真正原因。