Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran.
J Mol Model. 2012 May;18(5):2003-11. doi: 10.1007/s00894-011-1221-2. Epub 2011 Aug 30.
We report geometries, stabilization energies, symmetry adapted perturbation theory (SAPT) and quantum theory of atoms in molecules (QTAIM) analyses of a series of carbene-BX(3) complexes, where X = H, OH, NH(2), CH(3), CN, NC, F, Cl, and Br. The stabilization energies were calculated at HF, B3LYP, MP2, MP4 and CCSD(T)/aug-cc-pVDZ levels of theory using optimized geometries of all the complexes obtained from B3LYP/aug-cc-pVTZ. Quantitatively, all the complexes indicate the presence of B-C(carbene) interaction due to the short B-C(carbene) distances. Inspection of stabilization energies reveals that the interaction energies increase in the order NH(2) > OH > CH(3) > F > H > Cl > Br > NC > CN, which is the opposite trend shown in the binding distances. Considering the SAPT results, it is found that electrostatic effects account for about 50% of the overall attraction of the studied complexes. By comparison, the induction components of these interactions represent about 40% of the total attractive forces. Despite falling in a region of charge depletion with nabla(2)ρ(BCP) >0, the B-C(carbene) bond critical points (BCPs) are characterized by a reasonably large value of the electron density (ρ(BCP)) and H(BCP) <0, indicating that the potential energy overcomes the kinetic energy density at BCP and the B-C(carbene) bond is a polar covalent bond.
我们报告了一系列碳烯-BX(3)配合物的几何形状、稳定能、对称适应微扰理论(SAPT)和原子量子理论(QTAIM)分析,其中 X = H、OH、NH(2)、CH(3)、CN、NC、F、Cl 和 Br。使用所有配合物的 B3LYP/aug-cc-pVTZ 优化几何形状,在 HF、B3LYP、MP2、MP4 和 CCSD(T)/aug-cc-pVDZ 理论水平上计算了稳定能。定量地,所有配合物都表明存在 B-C(碳烯)相互作用,因为 B-C(碳烯)距离较短。稳定能的检验表明,相互作用能按 NH(2) > OH > CH(3) > F > H > Cl > Br > NC > CN 的顺序增加,这与结合距离所示的趋势相反。考虑到 SAPT 结果,发现静电效应约占研究配合物整体吸引力的 50%。相比之下,这些相互作用的诱导分量约占总吸引力的 40%。尽管 B-C(碳烯)键临界点(BCP)处的 nabla(2)ρ(BCP) >0 表明电荷耗尽,但 B-C(碳烯)键 BCP 具有相当大的电子密度(ρ(BCP))和 H(BCP) <0,表明势能克服了 BCP 处的动能密度,并且 B-C(碳烯)键是极性共价键。