Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
Annu Rev Biophys. 2010;39:367-85. doi: 10.1146/annurev.biophys.093008.131415.
How do molecular motors convert chemical energy to mechanical work? Helicases and nucleic acids offer simple motor systems for extensive biochemical and biophysical analyses. Atomic resolution structures of UvrD-like helicases complexed with DNA in the presence of AMPPNP, ADP.Pi, and Pi reveal several salient points that aid our understanding of mechanochemical coupling. Each ATPase cycle causes two motor domains to rotationally close and open. At a minimum, two motor-track contact points of alternating tight and loose attachment convert domain rotations to unidirectional movement. A motor is poised for action only when fully in contact with its track and, if applicable, working against a load. The orientation of domain rotation relative to the track determines whether the movement is linear, spiral, or circular. Motors powered by ATPases likely deliver each power stroke in two parts, before and after ATP hydrolysis. Implications of these findings for analyzing hexameric helicase, F(1)F(0) ATPase, and kinesin are discussed.
分子马达如何将化学能转化为机械能?解旋酶和核酸为广泛的生化和生物物理分析提供了简单的马达系统。在 AMPPNP、ADP.Pi 和 Pi 存在下与 DNA 结合的 UvrD 样解旋酶的原子分辨率结构揭示了几个有助于我们理解机械化学偶联的显著特点。每个 ATP 酶循环导致两个马达域旋转关闭和打开。至少有两个马达轨道接触点的交替紧密和松散附着将域旋转转换为单向运动。只有当马达完全与轨道接触并且(如果适用)与负载相对抗时,马达才能准备好运动。域旋转相对于轨道的方向决定了运动是线性的、螺旋的还是圆形的。由 ATP 酶驱动的马达可能会在 ATP 水解前后分两部分完成每个动力冲程。这些发现对分析六聚体解旋酶、F(1)F(0)ATP 酶和驱动蛋白的影响进行了讨论。