Suppr超能文献

从 UvrD 解旋酶中吸取的教训:定向运动的机制。

Lessons learned from UvrD helicase: mechanism for directional movement.

机构信息

Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Annu Rev Biophys. 2010;39:367-85. doi: 10.1146/annurev.biophys.093008.131415.

Abstract

How do molecular motors convert chemical energy to mechanical work? Helicases and nucleic acids offer simple motor systems for extensive biochemical and biophysical analyses. Atomic resolution structures of UvrD-like helicases complexed with DNA in the presence of AMPPNP, ADP.Pi, and Pi reveal several salient points that aid our understanding of mechanochemical coupling. Each ATPase cycle causes two motor domains to rotationally close and open. At a minimum, two motor-track contact points of alternating tight and loose attachment convert domain rotations to unidirectional movement. A motor is poised for action only when fully in contact with its track and, if applicable, working against a load. The orientation of domain rotation relative to the track determines whether the movement is linear, spiral, or circular. Motors powered by ATPases likely deliver each power stroke in two parts, before and after ATP hydrolysis. Implications of these findings for analyzing hexameric helicase, F(1)F(0) ATPase, and kinesin are discussed.

摘要

分子马达如何将化学能转化为机械能?解旋酶和核酸为广泛的生化和生物物理分析提供了简单的马达系统。在 AMPPNP、ADP.Pi 和 Pi 存在下与 DNA 结合的 UvrD 样解旋酶的原子分辨率结构揭示了几个有助于我们理解机械化学偶联的显著特点。每个 ATP 酶循环导致两个马达域旋转关闭和打开。至少有两个马达轨道接触点的交替紧密和松散附着将域旋转转换为单向运动。只有当马达完全与轨道接触并且(如果适用)与负载相对抗时,马达才能准备好运动。域旋转相对于轨道的方向决定了运动是线性的、螺旋的还是圆形的。由 ATP 酶驱动的马达可能会在 ATP 水解前后分两部分完成每个动力冲程。这些发现对分析六聚体解旋酶、F(1)F(0)ATP 酶和驱动蛋白的影响进行了讨论。

相似文献

1
Lessons learned from UvrD helicase: mechanism for directional movement.
Annu Rev Biophys. 2010;39:367-85. doi: 10.1146/annurev.biophys.093008.131415.
2
Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding.
J Mol Biol. 2011 Aug 19;411(3):633-48. doi: 10.1016/j.jmb.2011.06.019. Epub 2011 Jun 17.
3
Study of the ATP-binding site of helicase IV from Escherichia coli.
Biochem Biophys Res Commun. 2006 Mar 17;341(3):828-36. doi: 10.1016/j.bbrc.2006.01.040. Epub 2006 Jan 23.
5
Resolving Holliday junctions with Escherichia coli UvrD helicase.
J Biol Chem. 2012 Mar 9;287(11):8126-34. doi: 10.1074/jbc.M111.314047. Epub 2012 Jan 20.
6
Large domain movements upon UvrD dimerization and helicase activation.
Proc Natl Acad Sci U S A. 2017 Nov 14;114(46):12178-12183. doi: 10.1073/pnas.1712882114. Epub 2017 Oct 30.
7
Processivity of nucleic acid unwinding and translocation by helicases.
Proteins. 2016 Nov;84(11):1590-1605. doi: 10.1002/prot.25102. Epub 2016 Jul 22.
8
On helicases and other motor proteins.
Curr Opin Struct Biol. 2008 Apr;18(2):243-57. doi: 10.1016/j.sbi.2008.01.007. Epub 2008 Mar 10.
9
Stimulation of UvrD helicase by UvrAB.
J Biol Chem. 2009 Apr 3;284(14):9612-23. doi: 10.1074/jbc.M808030200. Epub 2009 Feb 10.

引用本文的文献

1
The Role of SF1 and SF2 Helicases in Biotechnological Applications.
Appl Biochem Biotechnol. 2024 Dec;196(12):9064-9084. doi: 10.1007/s12010-024-05027-w. Epub 2024 Aug 2.
3
Structural basis of SecA-mediated protein translocation.
Proc Natl Acad Sci U S A. 2023 Jan 10;120(2):e2208070120. doi: 10.1073/pnas.2208070120. Epub 2023 Jan 4.
5
Insight into the biochemical mechanism of DNA helicases provided by bulk-phase and single-molecule assays.
Methods. 2022 Aug;204:348-360. doi: 10.1016/j.ymeth.2021.12.002. Epub 2021 Dec 8.
6
Determining translocation orientations of nucleic acid helicases.
Methods. 2022 Aug;204:160-171. doi: 10.1016/j.ymeth.2021.11.001. Epub 2021 Nov 7.
7
Srs2 and Pif1 as Model Systems for Understanding Sf1a and Sf1b Helicase Structure and Function.
Genes (Basel). 2021 Aug 26;12(9):1319. doi: 10.3390/genes12091319.
8
Clutch mechanism of chemomechanical coupling in a DNA resecting motor nuclease.
Proc Natl Acad Sci U S A. 2021 Mar 16;118(11). doi: 10.1073/pnas.2023955118.
10
UvrD helicase-RNA polymerase interactions are governed by UvrD's carboxy-terminal Tudor domain.
Commun Biol. 2020 Oct 23;3(1):607. doi: 10.1038/s42003-020-01332-2.

本文引用的文献

2
Mechanistic basis of 5'-3' translocation in SF1B helicases.
Cell. 2009 May 29;137(5):849-59. doi: 10.1016/j.cell.2009.03.036.
3
Essentials for ATP synthesis by F1F0 ATP synthases.
Annu Rev Biochem. 2009;78:649-72. doi: 10.1146/annurev.biochem.78.081307.104803.
4
Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase.
Nature. 2009 May 21;459(7245):364-70. doi: 10.1038/nature08145.
5
ABC transporters: the power to change.
Nat Rev Mol Cell Biol. 2009 Mar;10(3):218-27. doi: 10.1038/nrm2646.
6
Walking the walk: how kinesin and dynein coordinate their steps.
Curr Opin Cell Biol. 2009 Feb;21(1):59-67. doi: 10.1016/j.ceb.2008.12.002. Epub 2009 Jan 27.
8
Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase.
Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20191-6. doi: 10.1073/pnas.0808037105. Epub 2008 Dec 10.
9
Microscopes for fluorimeters: the era of single molecule measurements.
Cell. 2008 Nov 28;135(5):779-85. doi: 10.1016/j.cell.2008.11.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验