Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, 40530, Sweden.
Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 40530, Sweden.
Commun Biol. 2020 Oct 23;3(1):607. doi: 10.1038/s42003-020-01332-2.
All living organisms have to cope with the constant threat of genome damage by UV light and other toxic reagents. To maintain the integrity of their genomes, organisms developed a variety of DNA repair pathways. One of these, the Transcription Coupled DNA-Repair (TCR) pathway, is triggered by stalled RNA Polymerase (RNAP) complexes at DNA damage sites on actively transcribed genes. A recently elucidated bacterial TCR pathway employs the UvrD helicase pulling back stalled RNAP complexes from the damage, stimulating recruitment of the DNA-repair machinery. However, structural and functional aspects of UvrD's interaction with RNA Polymerase remain elusive. Here we used advanced solution NMR spectroscopy to investigate UvrD's role within the TCR, identifying that the carboxy-terminal region of the UvrD helicase facilitates RNAP interactions by adopting a Tudor-domain like fold. Subsequently, we functionally analyzed this domain, identifying it as a crucial component for the UvrD-RNAP interaction besides having nucleic-acid affinity.
所有生物体都必须应对来自紫外线和其他有毒试剂的持续基因组损伤威胁。为了保持基因组的完整性,生物体开发了多种 DNA 修复途径。其中之一是转录偶联 DNA 修复(TCR)途径,它是由在活跃转录基因的 DNA 损伤部位停滞的 RNA 聚合酶(RNAP)复合物触发的。最近阐明的细菌 TCR 途径利用 UvrD 解旋酶将停滞的 RNAP 复合物从损伤处拉回,刺激 DNA 修复机制的招募。然而,UvrD 与 RNA 聚合酶相互作用的结构和功能方面仍然难以捉摸。在这里,我们使用先进的溶液 NMR 光谱学来研究 TCR 中 UvrD 的作用,确定 UvrD 解旋酶的羧基末端区域通过采用类似 Tudor 结构域的折叠来促进 RNAP 相互作用。随后,我们对该结构域进行了功能分析,确定它是 UvrD-RNAP 相互作用的关键组成部分,除了具有核酸亲和力之外。