Suppr超能文献

靶向活性位点门以产生 5-氨基乙酰丙酸合酶的超活性变体。

Targeting the active site gate to yield hyperactive variants of 5-aminolevulinate synthase.

机构信息

Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, Florida 33612, USA.

出版信息

J Biol Chem. 2010 Apr 30;285(18):13704-11. doi: 10.1074/jbc.M109.074237. Epub 2010 Mar 1.

Abstract

The rate of porphyrin biosynthesis in mammals is controlled by the activity of the pyridoxal 5'-phosphate-dependent enzyme 5-aminolevulinate synthase (EC 2.3.1.37). Based on the postulate that turnover in this enzyme is controlled by conformational dynamics associated with a highly conserved active site loop, we constructed a variant library by targeting imperfectly conserved noncatalytic loop residues and examined the effects on product and porphyrin production. Functional loop variants of the enzyme were isolated via genetic complementation in Escherichia coli strain HU227. Colony porphyrin fluorescence varied widely when bacterial cells harboring the loop variants were grown on inductive media; this facilitated identification of clones encoding unusually active enzyme variants. Nine loop variants leading to high in vivo porphyrin production were purified and characterized kinetically. Steady state catalytic efficiencies for the two substrates were increased by up to 100-fold. Presteady state single turnover reaction data indicated that the second step of quinonoid intermediate decay, previously assigned as reaction rate-limiting, was specifically accelerated such that in three of the variants this step was no longer kinetically significant. Overall, our data support the postulate that the active site loop controls the rate of product and porphyrin production in vivo and suggest the possibility of an as yet undiscovered means of allosteric regulation.

摘要

哺乳动物中卟啉生物合成的速度由吡哆醛 5'-磷酸依赖的酶 5-氨基酮戊酸合酶(EC 2.3.1.37)的活性控制。基于该酶的周转率受与高度保守的活性位点环相关的构象动力学控制的假设,我们通过靶向不完全保守的非催化环残基构建了一个变体文库,并研究了其对产物和卟啉生成的影响。通过在大肠杆菌菌株 HU227 中进行遗传互补,分离出了该酶的功能环变体。当在诱导培养基上生长时,携带环变体的细菌细胞的菌落卟啉荧光变化很大;这便于鉴定编码异常活跃的酶变体的克隆。纯化并动力学表征了导致高体内卟啉生成的 9 个环变体。两种底物的稳态催化效率提高了 100 倍。预稳态单转换反应数据表明,醌中间物衰变的第二步,先前被指定为反应限速步骤,被特异性加速,以至于在三种变体中,该步骤不再具有动力学意义。总体而言,我们的数据支持活性位点环控制体内产物和卟啉生成速度的假设,并表明可能存在尚未发现的变构调节方式。

相似文献

1
Targeting the active site gate to yield hyperactive variants of 5-aminolevulinate synthase.
J Biol Chem. 2010 Apr 30;285(18):13704-11. doi: 10.1074/jbc.M109.074237. Epub 2010 Mar 1.
4
Asn-150 of Murine Erythroid 5-Aminolevulinate Synthase Modulates the Catalytic Balance between the Rates of the Reversible Reaction.
J Biol Chem. 2015 Dec 25;290(52):30750-61. doi: 10.1074/jbc.M115.655399. Epub 2015 Oct 28.
8
Functional asymmetry for the active sites of linked 5-aminolevulinate synthase and 8-amino-7-oxononanoate synthase.
Arch Biochem Biophys. 2011 Jul;511(1-2):107-17. doi: 10.1016/j.abb.2011.05.002. Epub 2011 May 11.
10
5-Aminolevulinate synthase catalysis: The catcher in heme biosynthesis.
Mol Genet Metab. 2019 Nov;128(3):178-189. doi: 10.1016/j.ymgme.2019.06.003. Epub 2019 Jun 13.

引用本文的文献

1
Systems metabolic engineering of Escherichia coli for hyper-production of 5‑aminolevulinic acid.
Biotechnol Biofuels Bioprod. 2023 Feb 24;16(1):31. doi: 10.1186/s13068-023-02280-9.
2
The yeast ALA synthase C-terminus positively controls enzyme structure and function.
Protein Sci. 2023 Apr;32(4):e4600. doi: 10.1002/pro.4600.
3
Structural Basis for Allostery in PLP-dependent Enzymes.
Front Mol Biosci. 2022 Apr 25;9:884281. doi: 10.3389/fmolb.2022.884281. eCollection 2022.
5
5-Aminolevulinate synthase catalysis: The catcher in heme biosynthesis.
Mol Genet Metab. 2019 Nov;128(3):178-189. doi: 10.1016/j.ymgme.2019.06.003. Epub 2019 Jun 13.
6
Molecular expression, characterization and mechanism of ALAS2 gain-of-function mutants.
Mol Med. 2019 Jan 24;25(1):4. doi: 10.1186/s10020-019-0070-9.
8
Structure of the Mitochondrial Aminolevulinic Acid Synthase, a Key Heme Biosynthetic Enzyme.
Structure. 2018 Apr 3;26(4):580-589.e4. doi: 10.1016/j.str.2018.02.012. Epub 2018 Mar 15.
9
Investigating the bifunctionality of cyclizing and "classical" 5-aminolevulinate synthases.
Protein Sci. 2018 Feb;27(2):402-410. doi: 10.1002/pro.3324. Epub 2017 Nov 28.
10
5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
J Ind Microbiol Biotechnol. 2017 Aug;44(8):1127-1135. doi: 10.1007/s10295-017-1940-1. Epub 2017 Apr 5.

本文引用的文献

4
Free-energy landscape of enzyme catalysis.
Biochemistry. 2008 Mar 18;47(11):3317-21. doi: 10.1021/bi800049z. Epub 2008 Feb 26.
5
Illuminating the mechanistic roles of enzyme conformational dynamics.
Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18055-60. doi: 10.1073/pnas.0708600104. Epub 2007 Nov 7.
6
Transient kinetic studies support refinements to the chemical and kinetic mechanisms of aminolevulinate synthase.
J Biol Chem. 2007 Aug 10;282(32):23025-35. doi: 10.1074/jbc.M609330200. Epub 2007 May 7.
7
An NMR perspective on enzyme dynamics.
Chem Rev. 2006 Aug;106(8):3055-79. doi: 10.1021/cr050312q.
8
Intrinsic dynamics of an enzyme underlies catalysis.
Nature. 2005 Nov 3;438(7064):117-21. doi: 10.1038/nature04105.
9
Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans.
EMBO J. 2005 Sep 21;24(18):3166-77. doi: 10.1038/sj.emboj.7600792. Epub 2005 Aug 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验