Stojanovski Bosko M, Hunter Gregory A, Jahn Martina, Jahn Dieter, Ferreira Gloria C
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612 and.
Institute of Microbiology, Technical University of Braunschweig, Spielmannstrasse 7, D-38106 Braunschweig, Germany.
J Biol Chem. 2014 Aug 15;289(33):22915-22925. doi: 10.1074/jbc.M114.574731. Epub 2014 Jun 11.
5-Aminolevulinate (ALA), an essential metabolite in all heme-synthesizing organisms, results from the pyridoxal 5'-phosphate (PLP)-dependent enzymatic condensation of glycine with succinyl-CoA in non-plant eukaryotes and α-proteobacteria. The predicted chemical mechanism of this ALA synthase (ALAS)-catalyzed reaction includes a short-lived glycine quinonoid intermediate and an unstable 2-amino-3-ketoadipate intermediate. Using liquid chromatography coupled with tandem mass spectrometry to analyze the products from the reaction of murine erythroid ALAS (mALAS2) with O-methylglycine and succinyl-CoA, we directly identified the chemical nature of the inherently unstable 2-amino-3-ketoadipate intermediate, which predicates the glycine quinonoid species as its precursor. With stopped-flow absorption spectroscopy, we detected and confirmed the formation of the quinonoid intermediate upon reacting glycine with ALAS. Significantly, in the absence of the succinyl-CoA substrate, the external aldimine predominates over the glycine quinonoid intermediate. When instead of glycine, L-serine was reacted with ALAS, a lag phase was observed in the progress curve for the L-serine external aldimine formation, indicating a hysteretic behavior in ALAS. Hysteresis was not detected in the T148A-catalyzed L-serine external aldimine formation. These results with T148A, a mALAS2 variant, which, in contrast to wild-type mALAS2, is active with L-serine, suggest that active site Thr-148 modulates ALAS strict amino acid substrate specificity. The rate of ALA release is also controlled by a hysteretic kinetic mechanism (observed as a lag in the ALA external aldimine formation progress curve), consistent with conformational changes governing the dissociation of ALA from ALAS.
5-氨基乙酰丙酸(ALA)是所有血红素合成生物中的一种必需代谢物,在非植物真核生物和α-变形杆菌中,它由磷酸吡哆醛(PLP)依赖性酶催化甘氨酸与琥珀酰辅酶A缩合而成。这种ALA合酶(ALAS)催化反应的预测化学机制包括一个短寿命的甘氨酸醌中间体和一个不稳定的2-氨基-3-酮己二酸中间体。利用液相色谱-串联质谱分析小鼠红系ALAS(mALAS2)与O-甲基甘氨酸和琥珀酰辅酶A反应的产物,我们直接确定了本质上不稳定的2-氨基-3-酮己二酸中间体的化学性质,这表明甘氨酸醌类物质是其前体。通过停流吸收光谱,我们检测并证实了甘氨酸与ALAS反应时醌中间体的形成。值得注意的是,在没有琥珀酰辅酶A底物的情况下,外部醛亚胺比甘氨酸醌中间体占优势。当用L-丝氨酸代替甘氨酸与ALAS反应时,在L-丝氨酸外部醛亚胺形成的进程曲线中观察到一个滞后阶段,表明ALAS存在滞后行为。在T148A催化的L-丝氨酸外部醛亚胺形成过程中未检测到滞后现象。这些关于mALAS2变体T148A的结果表明,与野生型mALAS2不同,T148A对L-丝氨酸有活性,这表明活性位点的苏氨酸-148调节ALAS严格的氨基酸底物特异性。ALA释放的速率也受滞后动力学机制控制(表现为ALA外部醛亚胺形成进程曲线中的滞后),这与控制ALA从ALAS解离的构象变化一致。