Suppr超能文献

白色念珠菌生物膜与抗真菌药物的相互作用:转录反应和抗真菌药物与β-葡聚糖的结合。

Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans.

机构信息

Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Paris, France.

出版信息

Antimicrob Agents Chemother. 2010 May;54(5):2096-111. doi: 10.1128/AAC.01638-09. Epub 2010 Mar 1.

Abstract

Candida albicans can form biofilms that exhibit elevated intrinsic resistance to various antifungal agents, in particular azoles and polyenes. The molecular mechanisms involved in the antifungal resistance of biofilms remain poorly understood. We have used transcript profiling to explore the early transcriptional responses of mature C. albicans biofilms exposed to various antifungal agents. Mature C. albicans biofilms grown under continuous flow were exposed for as long as 2 h to concentrations of fluconazole (FLU), amphotericin B (AMB), and caspofungin (CAS) that, while lethal for planktonic cells, were not lethal for biofilms. Interestingly, FLU-exposed biofilms showed no significant changes in gene expression over the course of the experiment. In AMB-exposed biofilms, 2.7% of the genes showed altered expression, while in CAS-exposed biofilms, 13.0% of the genes had their expression modified. In particular, exposure to CAS resulted in the upregulation of hypha-specific genes known to play a role in biofilm formation, such as ALS3 and HWP1. There was little overlap between AMB- or CAS-responsive genes in biofilms and those that have been identified as AMB, FLU, or CAS responsive in C. albicans planktonic cultures. These results suggested that the resistance of C. albicans biofilms to azoles or polyenes was due not to the activation of specific mechanisms in response to exposure to these antifungals but rather to the intrinsic properties of the mature biofilms. In this regard, our study led us to observe that AMB physically bound C. albicans biofilms and beta-glucans, which have been proposed to be major constituents of the biofilm extracellular matrix and to prevent azoles from reaching biofilm cells. Thus, enhanced extracellular matrix or beta-glucan synthesis during biofilm growth might prevent antifungals, such as azoles and polyenes, from reaching biofilm cells, thus limiting their toxicity to these cells and the associated transcriptional responses.

摘要

白色念珠菌可以形成生物膜,表现出对各种抗真菌药物(尤其是唑类和多烯类药物)的固有耐药性。生物膜抗药性的分子机制仍知之甚少。我们使用转录谱分析方法研究了成熟白色念珠菌生物膜暴露于各种抗真菌药物后的早期转录反应。在连续流动下生长的成熟白色念珠菌生物膜,在长达 2 小时的时间内暴露于氟康唑(FLU)、两性霉素 B(AMB)和卡泊芬净(CAS)的浓度下,这些浓度对浮游细胞是致命的,但对生物膜却没有致命性。有趣的是,在实验过程中,暴露于 FLU 的生物膜的基因表达没有明显变化。在暴露于 AMB 的生物膜中,有 2.7%的基因表达发生改变,而在暴露于 CAS 的生物膜中,有 13.0%的基因表达发生改变。特别是,暴露于 CAS 导致与生物膜形成有关的菌丝特异性基因(如 ALS3 和 HWP1)的上调。在生物膜中,AMB 或 CAS 响应基因与已鉴定为白色念珠菌浮游培养物中 AMB、FLU 或 CAS 响应的基因之间几乎没有重叠。这些结果表明,白色念珠菌生物膜对唑类或多烯类药物的耐药性不是由于对这些抗真菌药物的暴露而激活特定的机制,而是由于成熟生物膜的固有特性。在这方面,我们的研究导致我们观察到 AMB 物理结合白色念珠菌生物膜和β-葡聚糖,β-葡聚糖被认为是生物膜细胞外基质的主要成分,并阻止唑类药物进入生物膜细胞。因此,生物膜生长过程中细胞外基质或β-葡聚糖合成的增强可能会阻止唑类和多烯类等抗真菌药物进入生物膜细胞,从而限制它们对这些细胞的毒性和相关的转录反应。

相似文献

1
Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans.
Antimicrob Agents Chemother. 2010 May;54(5):2096-111. doi: 10.1128/AAC.01638-09. Epub 2010 Mar 1.
2
Putative role of beta-1,3 glucans in Candida albicans biofilm resistance.
Antimicrob Agents Chemother. 2007 Feb;51(2):510-20. doi: 10.1128/AAC.01056-06. Epub 2006 Nov 27.
3
Transcriptional response to fluconazole and amphotericin B in Candida albicans biofilms.
Res Microbiol. 2010 May;161(4):284-92. doi: 10.1016/j.resmic.2010.02.004. Epub 2010 Feb 17.
4
Transcriptional regulation of drug-resistance genes in Candida albicans biofilms in response to antifungals.
J Med Microbiol. 2011 Sep;60(Pt 9):1241-1247. doi: 10.1099/jmm.0.030692-0. Epub 2011 Apr 7.
6
Effects of fluconazole, amphotericin B, and caspofungin on Candida albicans biofilms under conditions of flow and on biofilm dispersion.
Antimicrob Agents Chemother. 2011 Jul;55(7):3591-3. doi: 10.1128/AAC.01701-10. Epub 2011 Apr 25.
7
Hsp90 governs dispersion and drug resistance of fungal biofilms.
PLoS Pathog. 2011 Sep;7(9):e1002257. doi: 10.1371/journal.ppat.1002257. Epub 2011 Sep 8.
8
Quinacrine inhibits Candida albicans growth and filamentation at neutral pH.
Antimicrob Agents Chemother. 2014 Dec;58(12):7501-9. doi: 10.1128/AAC.03083-14. Epub 2014 Oct 6.
9
Sensitization of Candida albicans biofilms to various antifungal drugs by cyclosporine A.
Ann Clin Microbiol Antimicrob. 2012 Oct 4;11:27. doi: 10.1186/1476-0711-11-27.
10
Antifungal susceptibility of Candida biofilms: unique efficacy of amphotericin B lipid formulations and echinocandins.
Antimicrob Agents Chemother. 2002 Jun;46(6):1773-80. doi: 10.1128/AAC.46.6.1773-1780.2002.

引用本文的文献

1
Impact of Clove Oil on Biofilm Formation in and Its Effects on Mice with Candida Vaginitis.
Mycobiology. 2025 Aug 7;53(5):661-675. doi: 10.1080/12298093.2025.2537477. eCollection 2025.
3
Biofilm-Associated Candidiasis: Pathogenesis, Prevalence, Challenges and Therapeutic Options.
Pharmaceuticals (Basel). 2025 Mar 25;18(4):460. doi: 10.3390/ph18040460.
4
Anti-Biofilm Activity of Assamsaponin A, Theasaponin E1, and Theasaponin E2 against .
Int J Mol Sci. 2024 Mar 22;25(7):3599. doi: 10.3390/ijms25073599.
5
Biofilm: The invisible culprit in catheter-induced candidemia.
AIMS Microbiol. 2023 May 11;9(3):467-485. doi: 10.3934/microbiol.2023025. eCollection 2023.
6
Alginate oligosaccharides enhance the antifungal activity of nystatin against candidal biofilms.
Front Cell Infect Microbiol. 2023 Jan 31;13:1122340. doi: 10.3389/fcimb.2023.1122340. eCollection 2023.
7
2,4-Diacetylphloroglucinol Modulates Virulence.
J Fungi (Basel). 2022 Sep 27;8(10):1018. doi: 10.3390/jof8101018.
8
Inhibition of biofilm formation by gurmarin, a plant-derived cyclic peptide.
Front Cell Infect Microbiol. 2022 Oct 4;12:1017545. doi: 10.3389/fcimb.2022.1017545. eCollection 2022.
9
Genomic and Molecular Identification of Genes Contributing to the Caspofungin Paradoxical Effect in .
Microbiol Spectr. 2022 Oct 26;10(5):e0051922. doi: 10.1128/spectrum.00519-22. Epub 2022 Sep 12.
10
-Cinnamaldehyde Eluting Porous Silicon Microparticles Mitigate Cariogenic Biofilms.
Pharmaceutics. 2022 Jul 7;14(7):1428. doi: 10.3390/pharmaceutics14071428.

本文引用的文献

1
Hwp1 and related adhesins contribute to both mating and biofilm formation in Candida albicans.
Eukaryot Cell. 2009 Dec;8(12):1909-13. doi: 10.1128/EC.00245-09. Epub 2009 Oct 16.
2
A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections.
Infect Immun. 2009 Nov;77(11):4847-58. doi: 10.1128/IAI.00223-09. Epub 2009 Aug 17.
3
The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity.
Microbiology (Reading). 2009 Jun;155(Pt 6):2004-2020. doi: 10.1099/mic.0.028902-0. Epub 2009 Apr 21.
4
Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):599-604. doi: 10.1073/pnas.0804061106. Epub 2008 Dec 30.
5
Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms.
PLoS Pathog. 2008 Nov;4(11):e1000213. doi: 10.1371/journal.ppat.1000213. Epub 2008 Nov 21.
6
Complementary adhesin function in C. albicans biofilm formation.
Curr Biol. 2008 Jul 22;18(14):1017-24. doi: 10.1016/j.cub.2008.06.034.
7
Innate and induced resistance mechanisms of bacterial biofilms.
Curr Top Microbiol Immunol. 2008;322:85-105. doi: 10.1007/978-3-540-75418-3_5.
8
Stress, drugs, and evolution: the role of cellular signaling in fungal drug resistance.
Eukaryot Cell. 2008 May;7(5):747-64. doi: 10.1128/EC.00041-08. Epub 2008 Mar 28.
9
Absence of amphotericin B-tolerant persister cells in biofilms of some Candida species.
Antimicrob Agents Chemother. 2008 May;52(5):1884-7. doi: 10.1128/AAC.01473-07. Epub 2008 Feb 19.
10
UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence.
Mol Biol Cell. 2008 Apr;19(4):1354-65. doi: 10.1091/mbc.e07-11-1110. Epub 2008 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验