Unité Biologie et Pathogénicité Fongiques, Institut Pasteur, Paris, France.
Antimicrob Agents Chemother. 2010 May;54(5):2096-111. doi: 10.1128/AAC.01638-09. Epub 2010 Mar 1.
Candida albicans can form biofilms that exhibit elevated intrinsic resistance to various antifungal agents, in particular azoles and polyenes. The molecular mechanisms involved in the antifungal resistance of biofilms remain poorly understood. We have used transcript profiling to explore the early transcriptional responses of mature C. albicans biofilms exposed to various antifungal agents. Mature C. albicans biofilms grown under continuous flow were exposed for as long as 2 h to concentrations of fluconazole (FLU), amphotericin B (AMB), and caspofungin (CAS) that, while lethal for planktonic cells, were not lethal for biofilms. Interestingly, FLU-exposed biofilms showed no significant changes in gene expression over the course of the experiment. In AMB-exposed biofilms, 2.7% of the genes showed altered expression, while in CAS-exposed biofilms, 13.0% of the genes had their expression modified. In particular, exposure to CAS resulted in the upregulation of hypha-specific genes known to play a role in biofilm formation, such as ALS3 and HWP1. There was little overlap between AMB- or CAS-responsive genes in biofilms and those that have been identified as AMB, FLU, or CAS responsive in C. albicans planktonic cultures. These results suggested that the resistance of C. albicans biofilms to azoles or polyenes was due not to the activation of specific mechanisms in response to exposure to these antifungals but rather to the intrinsic properties of the mature biofilms. In this regard, our study led us to observe that AMB physically bound C. albicans biofilms and beta-glucans, which have been proposed to be major constituents of the biofilm extracellular matrix and to prevent azoles from reaching biofilm cells. Thus, enhanced extracellular matrix or beta-glucan synthesis during biofilm growth might prevent antifungals, such as azoles and polyenes, from reaching biofilm cells, thus limiting their toxicity to these cells and the associated transcriptional responses.
白色念珠菌可以形成生物膜,表现出对各种抗真菌药物(尤其是唑类和多烯类药物)的固有耐药性。生物膜抗药性的分子机制仍知之甚少。我们使用转录谱分析方法研究了成熟白色念珠菌生物膜暴露于各种抗真菌药物后的早期转录反应。在连续流动下生长的成熟白色念珠菌生物膜,在长达 2 小时的时间内暴露于氟康唑(FLU)、两性霉素 B(AMB)和卡泊芬净(CAS)的浓度下,这些浓度对浮游细胞是致命的,但对生物膜却没有致命性。有趣的是,在实验过程中,暴露于 FLU 的生物膜的基因表达没有明显变化。在暴露于 AMB 的生物膜中,有 2.7%的基因表达发生改变,而在暴露于 CAS 的生物膜中,有 13.0%的基因表达发生改变。特别是,暴露于 CAS 导致与生物膜形成有关的菌丝特异性基因(如 ALS3 和 HWP1)的上调。在生物膜中,AMB 或 CAS 响应基因与已鉴定为白色念珠菌浮游培养物中 AMB、FLU 或 CAS 响应的基因之间几乎没有重叠。这些结果表明,白色念珠菌生物膜对唑类或多烯类药物的耐药性不是由于对这些抗真菌药物的暴露而激活特定的机制,而是由于成熟生物膜的固有特性。在这方面,我们的研究导致我们观察到 AMB 物理结合白色念珠菌生物膜和β-葡聚糖,β-葡聚糖被认为是生物膜细胞外基质的主要成分,并阻止唑类药物进入生物膜细胞。因此,生物膜生长过程中细胞外基质或β-葡聚糖合成的增强可能会阻止唑类和多烯类等抗真菌药物进入生物膜细胞,从而限制它们对这些细胞的毒性和相关的转录反应。