Suppr超能文献

三维培养中乳腺癌细胞系 3D 形态发生的分子预测因子。

Molecular predictors of 3D morphogenesis by breast cancer cell lines in 3D culture.

机构信息

Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America.

出版信息

PLoS Comput Biol. 2010 Feb 26;6(2):e1000684. doi: 10.1371/journal.pcbi.1000684.

Abstract

Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPARgamma has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPARgamma has been validated through two supporting biological assays.

摘要

与表型特征相关的分子标记的分析是产生假说的最简单模型。在本文中,研究人员将 24 种乳腺细胞系在 3D 培养中生长,通过相差显微镜对其形态进行成像,并开发了计算方法来分割和表示每个菌落的多个维度。随后,通过共识聚类来识别这些形态反应中的亚群,以揭示出圆形、葡萄状和星状三种表型。在某些情况下,具有特定病理生物学表型的细胞系聚集在一起(例如,ERBB2 扩增的细胞系与葡萄状表型具有相同的形态特征)。接下来,通过(i)在每个形态簇内进行差异分析,以及(ii)在整个细胞系面板上进行回归分析,实现了与分子特征的关联。在这两种情况下,都确定了预测形态特征的主要基因。具体来说,PPARgamma 与侵袭性星状形态表型相关,这与三阴性病理生物学相对应。PPARgamma 通过两项支持性生物学检测得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f745/2829039/c956e2922bff/pcbi.1000684.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验