Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112, USA.
Biomacromolecules. 2010 Apr 12;11(4):969-74. doi: 10.1021/bm901426d.
Aquatic caddisflies diverged from a silk-spinning ancestor shared with terrestrial moths and butterflies. Caddisfly larva spin adhesive silk underwater to construct protective shelters with adventitiously gathered materials. A repeating (SX)(n) motif conserved in the H-fibroin of several caddisfly species is densely phosphorylated. In total, more than half of the serines in caddisfly silk may be phosphorylated. Major molecular adaptations allowing underwater spinning of an ancestral dry silk appear to have been phosphorylation of serines and the accumulation of basic residues in the silk proteins. The amphoteric nature of the silk proteins could contribute to silk fiber assembly through electrostatic association of phosphorylated blocks with arginine-rich blocks. The presence of Ca(2+) in the caddisfly larval silk proteins suggest phosphorylated serines could contribute to silk fiber periodic substructure through Ca(2+) crossbridging.
水生石蛾与陆地蛾和蝴蝶共享一个丝纺祖先分化而来。石蛾幼虫在水下吐出粘性丝,用偶然收集的材料建造保护性的庇护所。在几个石蛾物种的 H-丝素中保守的重复(SX)(n)基序高度磷酸化。总共,石蛾丝中超过一半的丝氨酸可能被磷酸化。允许在水下纺制原始干丝的主要分子适应似乎是丝氨酸的磷酸化和丝蛋白中碱性残基的积累。丝蛋白的两性性质可以通过磷酸化块与富含精氨酸的块之间的静电缔合促进丝纤维组装。在石蛾幼虫丝蛋白中存在 Ca(2+) 表明磷酸化丝氨酸可以通过 Ca(2+) 交联为丝纤维周期性亚结构做出贡献。