Suppr超能文献

使用加性主效应和乘积交互效应(AMMI)模型检测基因-基因相互作用。

Testing for gene-gene interaction with AMMI models.

作者信息

Barhdadi Amina, Dubé Marie-Pierre

机构信息

Montreal Heart Institute and Universite de Montreal.

出版信息

Stat Appl Genet Mol Biol. 2010;9:Article 2. doi: 10.2202/1544-6115.1410. Epub 2010 Jan 6.

Abstract

Studies have shown that many common diseases are influenced by multiple genes and their interactions. There is currently a strong interest in testing for association between combinations of these genes and disease, in particular because genes that affect the risk of disease only in the presence of another genetic variant may not be detected in marginal analysis. In this paper we propose the use of additive main effect and multiplicative interaction (AMMI) models to detect and to quantify gene-gene interaction effects for a quantitative trait. The objective of the present research is to demonstrate the practical advantages of these models to describe complex interaction between two unlinked loci. Although gene-gene interactions have often been defined as a deviance from additive genetic effects, the residual term has generally not been appropriately treated. The AMMI models allow for the analysis of a two way factorial data structure and combine the analysis of variance of the two main genotype effects with a principal component analysis of the residual multiplicative interaction. The AMMI models for gene-gene interaction presented here allow for the testing of non additivity between the two loci, and also describe how their interaction structure fits the existing non-additivity. Moreover, these models can be used to identify the specific two genotypes combinations that contribute to the significant gene-gene interaction. We describe the use of the biplot to display the structure of the interaction and evaluate the performance of the AMMI and the special cases of the AMMI previously described by Tukey and Mandel with simulated data sets. Our simulated study showed that the AMMI model is as powerful as general linear models when the interaction is not modeled in the presence of marginal effects. However, in the presence of pure epitasis, i.e. in the absence of marginal effects, the AMMI method was not found to be superior to other tested regression methods.

摘要

研究表明,许多常见疾病受多个基因及其相互作用的影响。目前,人们对检测这些基因组合与疾病之间的关联兴趣浓厚,特别是因为仅在存在另一种遗传变异的情况下才影响疾病风险的基因,在边际分析中可能无法被检测到。在本文中,我们建议使用加性主效应和乘性交互作用(AMMI)模型来检测和量化数量性状的基因-基因交互效应。本研究的目的是证明这些模型在描述两个不连锁基因座之间复杂相互作用方面的实际优势。虽然基因-基因相互作用通常被定义为偏离加性遗传效应,但残差项通常未得到适当处理。AMMI模型允许对双向析因数据结构进行分析,并将两个主要基因型效应的方差分析与残差乘性交互作用的主成分分析相结合。本文提出的用于基因-基因相互作用的AMMI模型允许检验两个基因座之间的非加性,还描述了它们的相互作用结构如何符合现有的非加性。此外,这些模型可用于识别导致显著基因-基因相互作用的特定两个基因型组合。我们描述了使用双标图来展示相互作用的结构,并使用模拟数据集评估AMMI以及之前由Tukey和Mandel描述的AMMI特殊情况的性能。我们的模拟研究表明,当在存在边际效应的情况下未对相互作用进行建模时,AMMI模型与一般线性模型一样强大。然而,在存在纯上位性的情况下,即在不存在边际效应的情况下,未发现AMMI方法优于其他测试的回归方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验