Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109-2029, USA.
Genet Epidemiol. 2013 Sep;37(6):581-91. doi: 10.1002/gepi.21744. Epub 2013 Jun 24.
There has been extensive literature on modeling gene-gene interaction (GGI) and gene-environment interaction (GEI) in case-control studies with limited literature on statistical methods for GGI and GEI in longitudinal cohort studies. We borrow ideas from the classical two-way analysis of variance literature to address the issue of robust modeling of interactions in repeated-measures studies. While classical interaction models proposed by Tukey and Mandel have interaction structures as a function of main effects, a newer class of models, additive main effects and multiplicative interaction (AMMI) models, do not have similar restrictive assumptions on the interaction structure. AMMI entails a singular value decomposition of the cell residual matrix after fitting the additive main effects and has been shown to perform well across various interaction structures. We consider these models for testing GGI and GEI from two perspectives: likelihood ratio test based on cell means and a regression-based approach using individual observations. Simulation results indicate that both approaches for AMMI models lead to valid tests in terms of maintaining the type I error rate, with the regression approach having better power properties. The performance of these models was evaluated across different interaction structures and 12 common epistasis patterns. In summary, AMMI model is robust with respect to misspecified interaction structure and is a useful screening tool for interaction even in the absence of main effects. We use the proposed methods to examine the interplay between the hemochromatosis gene and cumulative lead exposure on pulse pressure in the Normative Aging Study.
已有大量文献研究病例对照研究中的基因-基因相互作用(GGI)和基因-环境相互作用(GEI),但关于纵向队列研究中 GGI 和 GEI 的统计方法的文献却有限。我们借鉴经典双向方差分析文献中的思想,解决重复测量研究中交互作用稳健建模的问题。虽然 Tukey 和 Mandel 提出的经典交互模型的交互结构是主效应的函数,但一类新的模型,即加性主效应和乘法交互(AMMI)模型,对交互结构没有类似的限制性假设。AMMI 在拟合加性主效应后对细胞残差矩阵进行奇异值分解,并已被证明在各种交互结构下都具有良好的性能。我们从两个角度考虑这些模型来检验 GGI 和 GEI:基于细胞均值的似然比检验和基于个体观测值的回归方法。模拟结果表明,AMMI 模型的这两种方法在保持Ⅰ类错误率方面都能进行有效的检验,回归方法具有更好的功效特性。我们在不同的交互结构和 12 种常见的上位模式下评估了这些模型的性能。总之,AMMI 模型对于交互结构的错误指定具有稳健性,即使没有主效应,它也是一种有用的交互作用筛选工具。我们使用提出的方法来检验在 Normative Aging Study 中血色素沉着症基因和累积铅暴露对脉搏压的相互作用。