Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15203, USA. joerg.gerlach @ cellnet.org
Cells Tissues Organs. 2010;192(1):39-49. doi: 10.1159/000291014. Epub 2010 Feb 27.
We describe hollow fiber-based three-dimensional (3D) dynamic perfusion bioreactor technology for embryonic stem cells (ESC) which is scalable for laboratory and potentially clinical translation applications. We added 2 more compartments to the typical 2-compartment devices, namely an additional media capillary compartment for countercurrent 'arteriovenous' flow and an oxygenation capillary compartment. Each capillary membrane compartment can be perfused independently. Interweaving the 3 capillary systems to form repetitive units allows bioreactor scalability by multiplying the capillary units and provides decentralized media perfusion while enhancing mass exchange and reducing gradient distances from decimeters to more physiologic lengths of <1 mm. The exterior of the resulting membrane network, the cell compartment, is used as a physically active scaffold for cell aggregation; adjusting intercapillary distances enables control of the size of cell aggregates. To demonstrate the technology, mouse ESC (mESC) were cultured in 8- or 800-ml cell compartment bioreactors. We were able to confirm the hypothesis that this bioreactor enables mESC expansion qualitatively comparable to that obtained with Petri dishes, but on a larger scale. To test this, we compared the growth of 129/SVEV mESC in static two-dimensional Petri dishes with that in 3D perfusion bioreactors. We then tested the feasibility of scaling up the culture. In an 800-ml prototype, we cultured approximately 5 x 10(9) cells, replacing up to 800 conventional 100-mm Petri dishes. Teratoma formation studies in mice confirmed protein expression and gene expression results with regard to maintaining 'stemness' markers during cell expansion.
我们描述了一种基于中空纤维的三维(3D)动态灌注生物反应器技术,用于胚胎干细胞(ESC),该技术可扩展用于实验室和潜在的临床转化应用。我们在典型的 2 隔室设备中增加了另外 2 个隔室,即用于反向“动静脉”流动的附加介质毛细血管隔室和氧合毛细血管隔室。每个毛细血管膜隔室可以独立灌注。将 3 个毛细血管系统交织在一起形成重复单元,通过倍增毛细血管单元实现生物反应器的可扩展性,并提供分散的介质灌注,同时增强质量交换并将梯度距离从分米缩短至更接近生理长度的 <1 毫米。由此产生的膜网络的外部,即细胞隔室,用作细胞聚集的物理活性支架;调整毛细血管之间的距离可以控制细胞聚集体的大小。为了验证该技术,我们在 8 或 800 毫升细胞隔室生物反应器中培养了小鼠 ESC(mESC)。我们能够证实该生物反应器能够使 mESC 以与 Petri 皿相当的质量扩大,但其规模更大。为了检验这一点,我们比较了 129/SVEV mESC 在静态二维 Petri 皿和 3D 灌注生物反应器中的生长情况。然后,我们测试了扩大培养的可行性。在 800 毫升的原型中,我们培养了大约 5 x 10(9)个细胞,替代了多达 800 个传统的 100 毫米 Petri 皿。在小鼠中的畸胎瘤形成研究证实了在细胞扩增过程中维持“干性”标志物的蛋白表达和基因表达结果。