Suppr超能文献

水动力环境对干细胞培养的多参数影响。

The multiparametric effects of hydrodynamic environments on stem cell culture.

机构信息

The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0532, USA.

出版信息

Tissue Eng Part B Rev. 2011 Aug;17(4):249-62. doi: 10.1089/ten.TEB.2011.0040. Epub 2011 May 25.

Abstract

Stem cells possess the unique capacity to differentiate into many clinically relevant somatic cell types, making them a promising cell source for tissue engineering applications and regenerative medicine therapies. However, in order for the therapeutic promise of stem cells to be fully realized, scalable approaches to efficiently direct differentiation must be developed. Traditionally, suspension culture systems are employed for the scale-up manufacturing of biologics via bioprocessing systems that heavily rely upon various types of bioreactors. However, in contrast to conventional bench-scale static cultures, large-scale suspension cultures impart complex hydrodynamic forces on cells and aggregates due to fluid mixing conditions. Stem cells are exquisitely sensitive to environmental perturbations, thus motivating the need for a more systematic understanding of the effects of hydrodynamic environments on stem cell expansion and differentiation. This article discusses the interdependent relationships between stem cell aggregation, metabolism, and phenotype in the context of hydrodynamic culture environments. Ultimately, an improved understanding of the multifactorial response of stem cells to mixed culture conditions will enable the design of bioreactors and bioprocessing systems for scalable directed differentiation approaches.

摘要

干细胞具有分化为许多临床相关体细胞类型的独特能力,使其成为组织工程应用和再生医学疗法有前途的细胞来源。然而,为了充分实现干细胞的治疗潜力,必须开发出可扩展的方法来有效地指导分化。传统上,通过严重依赖各种类型生物反应器的生物加工系统,采用悬浮培养系统来扩大生物制剂的规模生产。然而,与传统的台式静态培养相比,由于流体混合条件,大规模悬浮培养对细胞和聚集体施加复杂的流体动力。干细胞对环境干扰非常敏感,因此需要更系统地了解流体动力环境对干细胞扩增和分化的影响。本文讨论了在流体动力学培养环境中干细胞聚集、代谢和表型之间的相互依存关系。最终,对干细胞对混合培养条件的多因素反应的深入了解将能够设计用于可扩展定向分化方法的生物反应器和生物加工系统。

相似文献

1
The multiparametric effects of hydrodynamic environments on stem cell culture.
Tissue Eng Part B Rev. 2011 Aug;17(4):249-62. doi: 10.1089/ten.TEB.2011.0040. Epub 2011 May 25.
2
Hydrodynamic modulation of pluripotent stem cells.
Stem Cell Res Ther. 2012 Nov 20;3(6):45. doi: 10.1186/scrt136.
3
Systematic analysis of embryonic stem cell differentiation in hydrodynamic environments with controlled embryoid body size.
Integr Biol (Camb). 2012 Jun;4(6):641-50. doi: 10.1039/c2ib00165a. Epub 2012 May 18.
4
Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor.
Tissue Eng Part C Methods. 2012 Nov;18(11):831-51. doi: 10.1089/ten.TEC.2012.0161. Epub 2012 Jun 13.
7
Engineering three-dimensional stem cell morphogenesis for the development of tissue models and scalable regenerative therapeutics.
Ann Biomed Eng. 2014 Feb;42(2):352-67. doi: 10.1007/s10439-013-0953-9. Epub 2013 Dec 3.
9
Impact of Feeding Strategies on the Scalable Expansion of Human Pluripotent Stem Cells in Single-Use Stirred Tank Bioreactors.
Stem Cells Transl Med. 2016 Oct;5(10):1289-1301. doi: 10.5966/sctm.2015-0253. Epub 2016 Jul 1.
10
Scalable stirred-suspension bioreactor culture of human pluripotent stem cells.
Tissue Eng Part A. 2010 Feb;16(2):405-21. doi: 10.1089/ten.tea.2009.0454.

引用本文的文献

1
Engineering Characterization of Small-Scale Bioreactors for Large-Scale hiPSC Production.
Biotechnol J. 2025 Sep;20(9):e70106. doi: 10.1002/biot.70106.
2
Cell retention in scalable, perfusion-based mesenchymal stem cell expansion processes: a proof of concept.
Front Bioeng Biotechnol. 2025 Jul 4;13:1611703. doi: 10.3389/fbioe.2025.1611703. eCollection 2025.
3
Improving three-dimensional human pluripotent cell culture efficiency via surface molecule coating.
Front Chem Eng. 2022;4. doi: 10.3389/fceng.2022.1031395. Epub 2022 Oct 20.
4
5
Hydrogel microsphere stem cell encapsulation enhances cardiomyocyte differentiation and functionality in scalable suspension system.
Bioact Mater. 2024 Oct 1;43:423-440. doi: 10.1016/j.bioactmat.2024.08.043. eCollection 2025 Jan.
6
Designing magnetic microcapsules for cultivation and differentiation of stem cell spheroids.
Microsyst Nanoeng. 2024 Sep 12;10(1):127. doi: 10.1038/s41378-024-00747-9.
7
Design of neural organoids engineered by mechanical forces.
IBRO Neurosci Rep. 2024 Jan 24;16:190-195. doi: 10.1016/j.ibneur.2024.01.004. eCollection 2024 Jun.
8
Stochastic biological system-of-systems modelling for iPSC culture.
Commun Biol. 2024 Jan 8;7(1):39. doi: 10.1038/s42003-023-05653-w.
10
Overexpressed Histocompatibility Minor 13 was Associated with Liver Hepatocellular Carcinoma Progression and Prognosis.
Genet Res (Camb). 2022 Oct 3;2022:7067743. doi: 10.1155/2022/7067743. eCollection 2022.

本文引用的文献

1
Bioengineering anembryonic human trophoblast vesicles.
Reprod Sci. 2011 Feb;18(2):128-35. doi: 10.1177/1933719110381923. Epub 2010 Oct 26.
2
High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.
Analyst. 2011 Feb 7;136(3):473-8. doi: 10.1039/c0an00609b. Epub 2010 Oct 21.
3
Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation.
Biomaterials. 2011 Jan;32(1):48-56. doi: 10.1016/j.biomaterials.2010.08.113. Epub 2010 Sep 22.
4
O2 regulates stem cells through Wnt/β-catenin signalling.
Nat Cell Biol. 2010 Oct;12(10):1007-13. doi: 10.1038/ncb2102. Epub 2010 Sep 19.
5
Fluid shear stress promotes an endothelial-like phenotype during the early differentiation of embryonic stem cells.
Tissue Eng Part A. 2010 Nov;16(11):3547-53. doi: 10.1089/ten.TEA.2010.0014. Epub 2010 Aug 28.
6
Improving expansion of pluripotent human embryonic stem cells in perfused bioreactors through oxygen control.
J Biotechnol. 2010 Aug 2;148(4):208-15. doi: 10.1016/j.jbiotec.2010.06.015. Epub 2010 Jun 17.
7
Cardiac cell generation from encapsulated embryonic stem cells in static and scalable culture systems.
Cell Transplant. 2010;19(11):1397-412. doi: 10.3727/096368910X513955. Epub 2010 Jun 29.
8
Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors.
Tissue Eng Part A. 2010 Nov;16(11):3285-98. doi: 10.1089/ten.TEA.2010.0166. Epub 2010 Jul 12.
10
Up-scaling single cell-inoculated suspension culture of human embryonic stem cells.
Stem Cell Res. 2010 May;4(3):165-79. doi: 10.1016/j.scr.2010.03.001. Epub 2010 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验