Suppr超能文献

基于隔室中空纤维毛细管膜的生物反应器技术在体外研究造血干细胞红细胞谱系方向上的应用。

Compartmental hollow fiber capillary membrane-based bioreactor technology for in vitro studies on red blood cell lineage direction of hematopoietic stem cells.

机构信息

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15203, USA.

出版信息

Tissue Eng Part C Methods. 2012 Feb;18(2):133-42. doi: 10.1089/ten.TEC.2011.0305. Epub 2011 Dec 28.

Abstract

Continuous production of red blood cells (RBCs) in an automated closed culture system using hematopoietic stem cell (HSC) progenitor cell populations is of interest for clinical application because of the high demand for blood transfusions. Previously, we introduced a four-compartment bioreactor that consisted of two bundles of hollow fiber microfiltration membranes for transport of culture medium (forming two medium compartments), interwoven with one bundle of hollow fiber membranes for transport of oxygen (O(2)), carbon dioxide (CO(2)), and other gases (forming one gas compartment). Small-scale prototypes were developed of the three-dimensional (3D) perfusion cell culture systems, which enable convection-based mass transfer and integral oxygenation in the cell compartment. CD34(+) HSC were isolated from human cord blood units using a magnetic separation procedure. Cells were inoculated into 2- or 8-mL scaled-down versions of the previously designed 800-mL cell compartment devices and perfused with erythrocyte proliferation and differentiation medium. First, using the small-scale 2-mL analytical scale bioreactor, with an initial seeding density of 800,000 cells/mL, we demonstrated approximately 100-fold cell expansion and differentiation after 7 days of culture. An 8-mL laboratory-scale bioreactor was then used to show pseudocontinuous production by intermediately harvesting cells. Subsequently, we were able to use a model to demonstrate semicontinuous production with up to 14,288-fold expansion using seeding densities of 800,000 cells/mL. The down-scaled culture technology allows for expansion of CD34(+) cells and stimulating these progenitors towards RBC lineage, expressing approximately 40% CD235(+) and enucleation. The 3D perfusion technology provides an innovative tool for studies on RBC production, which is scalable.

摘要

在自动化封闭培养系统中使用造血干细胞(HSC)祖细胞群体连续生产红细胞(RBC),这在临床应用中很有意义,因为对输血的需求很高。此前,我们引入了一种四室生物反应器,它由两组用于培养基运输的中空纤维微滤膜(形成两个培养基室)组成,与一组用于氧气(O(2))、二氧化碳(CO(2))和其他气体运输的中空纤维膜交织在一起(形成一个气体室)。开发了三维(3D)灌注细胞培养系统的小型原型,该系统能够在细胞室中实现基于对流的质量传递和整体供氧。使用磁性分离程序从人脐带血单位中分离 CD34(+) HSC。将细胞接种到以前设计的 800 毫升细胞室设备的 2 毫升或 8 毫升缩小版本中,并以红细胞增殖和分化培养基进行灌注。首先,使用小型 2 毫升分析规模生物反应器,初始接种密度为 800,000 个细胞/mL,我们在培养 7 天后证明了大约 100 倍的细胞扩增和分化。然后使用 8 毫升实验室规模生物反应器通过中间收获细胞来展示伪连续生产。随后,我们能够使用模型来展示使用 800,000 个细胞/mL 的接种密度进行半连续生产,最高可达到 14,288 倍的扩增。缩小规模的培养技术允许 CD34(+)细胞的扩增,并刺激这些祖细胞向 RBC 谱系发展,表达约 40%的 CD235(+)和去核。3D 灌注技术为 RBC 生产研究提供了一种创新工具,具有可扩展性。

相似文献

3
A novel automated bioreactor for scalable process optimisation of haematopoietic stem cell culture.
J Biotechnol. 2012 Oct 31;161(3):387-90. doi: 10.1016/j.jbiotec.2012.06.025. Epub 2012 Jul 5.
4
Periodic harvesting of embryonic stem cells from a hollow-fiber membrane based four-compartment bioreactor.
Biotechnol Prog. 2016 Jan-Feb;32(1):141-51. doi: 10.1002/btpr.2182. Epub 2015 Nov 3.
6
Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells.
Cell Tissue Res. 2016 Jun;364(3):573-584. doi: 10.1007/s00441-015-2348-8. Epub 2016 Jan 30.
9
Bioreactor for blood product production.
Cell Transplant. 2012;21(6):1235-44. doi: 10.3727/096368911X627363. Epub 2012 Mar 8.
10
Simultaneous expansion and harvest of hematopoietic stem cells and mesenchymal stem cells derived from umbilical cord blood.
J Mater Sci Mater Med. 2010 Dec;21(12):3183-93. doi: 10.1007/s10856-010-4167-5. Epub 2010 Oct 6.

引用本文的文献

1
Bioartificial liver: Where lies the path ahead-A review.
Hepatol Commun. 2025 Aug 15;9(9). doi: 10.1097/HC9.0000000000000788. eCollection 2025 Sep 1.
2
Bioprinting Soft 3D Models of Hematopoiesis using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation.
Adv Sci (Weinh). 2024 May;11(18):e2308276. doi: 10.1002/advs.202308276. Epub 2024 Mar 21.
3
Current status of red blood cell manufacturing in 3D culture and bioreactors.
Blood Res. 2023 Apr 30;58(S1):S46-S51. doi: 10.5045/br.2023.2023008. Epub 2023 Apr 7.
4
Expansion and differentiation of ex vivo cultured erythroblasts in scalable stirred bioreactors.
Biotechnol Bioeng. 2022 Nov;119(11):3096-3116. doi: 10.1002/bit.28193. Epub 2022 Aug 5.
5
Therapeutic use of red blood cells and platelets derived from human cord blood stem cells.
Stem Cells Transl Med. 2021 Nov;10 Suppl 2(Suppl 2):S48-S53. doi: 10.1002/sctm.20-0517.
6
Latest culture techniques: cracking the secrets of bone marrow to mass-produce erythrocytes and platelets .
Haematologica. 2021 Apr 1;106(4):947-957. doi: 10.3324/haematol.2020.262485.
7
Scale-Up Technologies for the Manufacture of Adherent Cells.
Front Nutr. 2020 Nov 4;7:575146. doi: 10.3389/fnut.2020.575146. eCollection 2020.
8
Modelling mesenchymal stromal cell growth in a packed bed bioreactor with a gas permeable wall.
PLoS One. 2018 Aug 27;13(8):e0202079. doi: 10.1371/journal.pone.0202079. eCollection 2018.
9
Ceramic Hollow Fibre Constructs for Continuous Perfusion and Cell Harvest from 3D Hematopoietic Organoids.
Stem Cells Int. 2018 Apr 2;2018:6230214. doi: 10.1155/2018/6230214. eCollection 2018.

本文引用的文献

1
Ex vivo expansion of human hematopoietic stem and progenitor cells.
Blood. 2011 Jun 9;117(23):6083-90. doi: 10.1182/blood-2011-01-283606. Epub 2011 Mar 23.
2
Process challenges relating to hematopoietic stem cell cultivation in bioreactors.
J Ind Microbiol Biotechnol. 2011 Jul;38(7):761-7. doi: 10.1007/s10295-011-0951-6. Epub 2011 Mar 9.
3
The three "R"s of blood transfusion in 2020; routine, reliable and robust.
Clin Lab Med. 2010 Jun;30(2):405-17. doi: 10.1016/j.cll.2010.02.010.
4
From stem cell to red blood cells in vitro: "the 12 labors of Hercules".
Clin Lab Med. 2010 Jun;30(2):391-403. doi: 10.1016/j.cll.2010.02.003. Epub 2010 May 6.
5
The give and take of blood banking.
MLO Med Lab Obs. 2010 Mar;42(3):8, 10, 12 passim; quiz 18-9.
6
Stem cells--a source of adult red blood cells for transfusion purposes: present and future.
Crit Care Clin. 2009 Apr;25(2):383-98, Table of Contents. doi: 10.1016/j.ccc.2008.12.008.
8
The systematic production of cells for cell therapies.
Cell Stem Cell. 2008 Oct 9;3(4):369-81. doi: 10.1016/j.stem.2008.09.001.
9
Age of transfused red cells and early outcomes after cardiac surgery.
Ann Thorac Surg. 2008 Aug;86(2):554-9. doi: 10.1016/j.athoracsur.2008.04.040.
10
Different measures of human hematopoietic cell culture performance are optimized under vastly different conditions.
Biotechnol Bioeng. 1996 Jun 5;50(5):505-13. doi: 10.1002/(SICI)1097-0290(19960605)50:5<505::AID-BIT4>3.0.CO;2-J.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验