Yiengprugsawan Vasoontara, Lim Lynette Ly, Carmichael Gordon A, Dear Keith Bg, Sleigh Adrian C
Australian National University, National Centre for Epidemiology and Population Health, ANU College of Medicine, Biology & Environment, Canberra ACT 0200, Australia.
BMC Res Notes. 2010 Mar 4;3:57. doi: 10.1186/1756-0500-3-57.
Decomposition of concentration indices yields useful information regarding the relative importance of various determinants of inequitable health outcomes. But the two estimation approaches to decomposition in current use are not suitable for binary outcomes.
The paper compares three estimation approaches for decomposition of inequality concentration indices: Ordinary Least Squares (OLS), probit, and the Generalized Linear Model (GLM) binomial distribution and identity link. Data are from the Thai Health and Welfare Survey 2003. The OLS estimates do not take into account the binary nature of the outcome and the probit estimates depend on the choice of reference groups, whereas the GLM binomial identity approach has neither of these problems.
The GLM with binomial distribution and identity link allows the inequality decomposition model to hold, and produces valid estimates of determinants that do not vary according to choice of reference groups. This GLM approach is readily available in standard statistical packages.
浓度指数的分解可产生有关不公平健康结果的各种决定因素相对重要性的有用信息。但目前使用的两种分解估计方法不适用于二元结果。
本文比较了三种不平等浓度指数分解的估计方法:普通最小二乘法(OLS)、概率单位法以及广义线性模型(GLM)二项分布和恒等链接法。数据来自2003年泰国健康与福利调查。OLS估计未考虑结果的二元性质,概率单位估计取决于参考组的选择,而GLM二项恒等法不存在这些问题。
具有二项分布和恒等链接的GLM可使不平等分解模型成立,并能对不随参考组选择而变化的决定因素进行有效估计。这种GLM方法在标准统计软件包中很容易获得。