Suppr超能文献

统计模型的选择在慢性病患者的成本估算中是否具有相关性?皮埃蒙特糖尿病登记处的实证方法。

Is the choice of the statistical model relevant in the cost estimation of patients with chronic diseases? An empirical approach by the Piedmont Diabetes Registry.

作者信息

Pagano Eva, Petrelli Alessio, Picariello Roberta, Merletti Franco, Gnavi Roberto, Bruno Graziella

机构信息

Unit of Cancer Epidemiology, "Città della Salute e della Scienza" Hospital and CPO Piemonte, Turin, Italy.

Epidemiology Unit, ASL 5, Piedmont Region, Grugliasco, Turin, Italy.

出版信息

BMC Health Serv Res. 2015 Dec 30;15:582. doi: 10.1186/s12913-015-1241-1.

Abstract

BACKGROUND

Chronic diseases impose large economic burdens. Cost analysis is not straightforward, particularly when the goal is to relate costs to specific patterns of covariates, and to compare costs between diseased and healthy populations. Using different statistical methods this study describes the impact on results and conclusions of analyzing health care costs in a population with diabetes.

METHODS

Direct health care costs of people living in Turin were estimated from administrative databases of the Regional Health System. Patients with diabetes were identified through the Piedmont Diabetes Registry. The effect of diabetes on mean annual expenditure was analyzed using the following multivariable models: 1) an ordinary least squares regression (OLS); 2) a lognormal linear regression model; 3) a generalized linear model (GLM) with gamma distribution. Presence of zero cost observation was handled by means of a two part model.

RESULTS

The OLS provides the effect of covariates in terms of absolute additive costs due to the presence of diabetes (€ 1,832). Lognormal and GLM provide relative estimates of the effect: the cost for diabetes would be six fold that for non diabetes patients calculated with the lognormal. The same data give a 2.6-fold increase if calculated with the GLM. Different methods provide quite different estimated costs for patients with and without diabetes, and different costs ratios between them, ranging from 3.2 to 5.6.

CONCLUSIONS

Costs estimates of a chronic disease vary considerably depending on the statistical method employed; therefore a careful choice of methods to analyze data is required before inferring results.

摘要

背景

慢性病带来巨大的经济负担。成本分析并非易事,尤其是当目标是将成本与特定的协变量模式相关联,并比较患病群体和健康群体之间的成本时。本研究使用不同的统计方法描述了对糖尿病患者群体医疗保健成本分析结果和结论的影响。

方法

从地区卫生系统的行政数据库中估算都灵居民的直接医疗保健成本。通过皮埃蒙特糖尿病登记处识别糖尿病患者。使用以下多变量模型分析糖尿病对年均支出的影响:1)普通最小二乘法回归(OLS);2)对数正态线性回归模型;3)具有伽马分布的广义线性模型(GLM)。通过两部分模型处理零成本观察值的存在。

结果

OLS根据糖尿病导致的绝对附加成本提供协变量的影响(1832欧元)。对数正态模型和GLM提供影响的相对估计值:使用对数正态模型计算,糖尿病患者的成本是非糖尿病患者的六倍。使用GLM计算,相同数据显示成本增加2.6倍。不同方法为糖尿病患者和非糖尿病患者提供的估计成本差异很大,并且他们之间的成本比率也不同,范围从3.2到5.6。

结论

慢性病的成本估计因所采用的统计方法而异;因此,在推断结果之前,需要谨慎选择分析数据的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验