Nam Hyun Soo, Park Chunjae, Kwon Oh In
Department of Mathematics, Konkuk University, Korea.
Phys Med Biol. 2008 Dec 7;53(23):6947-61. doi: 10.1088/0031-9155/53/23/019. Epub 2008 Nov 12.
Magnetic resonance electrical impedance tomography (MREIT) is to visualize the current density and the conductivity distribution in an electrical object Omega using the measured magnetic flux data by an MRI scanner. MREIT uses only one component B(z) of the magnetic flux density B = (B(x), B(y), B(z)) generated by an injected electrical current into the object. In this paper, we propose a fast and direct non-iterative algorithm to reconstruct the internal conductivity distribution in Omega with the measured B(z) data. To develop the algorithm, we investigate the relation between the projected current density J(P), a uniquely determined component of J by the map from current J to measured B(z) data and the isotropic conductivity. Three-dimensional numerical simulations and phantom experiments are studied to show the feasibility of the proposed method by comparing with those using the conventional iterative harmonic B(z) algorithm.
磁共振电阻抗断层成像(MREIT)旨在利用磁共振成像(MRI)扫描仪测量的磁通量数据,可视化电学对象Ω中的电流密度和电导率分布。MREIT仅使用注入到对象中的电流所产生的磁通密度B = (B(x),B(y),B(z))的一个分量B(z)。在本文中,我们提出了一种快速直接的非迭代算法,用于根据测量的B(z)数据重建Ω中的内部电导率分布。为了开发该算法,我们研究了投影电流密度J(P)(通过从电流J到测量的B(z)数据的映射唯一确定的J的分量)与各向同性电导率之间的关系。通过三维数值模拟和体模实验,与使用传统迭代谐波B(z)算法的方法进行比较,以证明所提方法的可行性。