Park Chunjae, Lee Byung Il, Kwon Oh In
Department of Mathematics, Konkuk University, Korea.
Phys Med Biol. 2007 Jun 7;52(11):3001-13. doi: 10.1088/0031-9155/52/11/005. Epub 2007 May 4.
Magnetic resonance current density imaging (MRCDI) provides a current density image by measuring the induced magnetic flux density within the subject with a magnetic resonance imaging (MRI) scanner. Magnetic resonance electrical impedance tomography (MREIT) has been focused on extracting some useful information of the current density and conductivity distribution in the subject Omega using measured B(z), one component of the magnetic flux density B. In this paper, we analyze the map Tau from current density vector field J to one component of magnetic flux density B(z) without any assumption on the conductivity. The map Tau provides an orthogonal decomposition J = J(P) + J(N) of the current J where J(N) belongs to the null space of the map Tau. We explicitly describe the projected current density J(P) from measured B(z). Based on the decomposition, we prove that B(z) data due to one injection current guarantee a unique determination of the isotropic conductivity under assumptions that the current is two-dimensional and the conductivity value on the surface is known. For a two-dimensional dominating current case, the projected current density J(P) provides a good approximation of the true current J without accumulating noise effects. Numerical simulations show that J(P) from measured B(z) is quite similar to the target J. Biological tissue phantom experiments compare J(P) with the reconstructed J via the reconstructed isotropic conductivity using the harmonic B(z) algorithm.
磁共振电流密度成像(MRCDI)通过使用磁共振成像(MRI)扫描仪测量受试者体内的感应磁通密度来提供电流密度图像。磁共振电阻抗断层成像(MREIT)一直致力于利用测量得到的磁通密度B的一个分量B(z)来提取受试者体内电流密度和电导率分布的一些有用信息。在本文中,我们在不对电导率做任何假设的情况下,分析了从电流密度矢量场J到磁通密度B(z)的一个分量的映射Tau。映射Tau提供了电流J的正交分解J = J(P) + J(N),其中J(N)属于映射Tau的零空间。我们明确描述了根据测量得到的B(z)投影得到的电流密度J(P)。基于这种分解,我们证明了在电流为二维且表面电导率值已知的假设下,由一次注入电流产生的B(z)数据能够保证唯一确定各向同性电导率。对于二维主导电流情况,投影电流密度J(P)能很好地近似真实电流J,而不会累积噪声效应。数值模拟表明,根据测量得到的B(z)计算出的J(P)与目标J非常相似。生物组织模型实验通过使用谐波B(z)算法根据重建的各向同性电导率将J(P)与重建的J进行了比较。