Department of Chemistry and the Center for Energy Nanoscience and Technology, University of Southern California, Los Angeles, California 90089, USA.
J Am Chem Soc. 2010 Mar 31;132(12):4060-1. doi: 10.1021/ja100249m.
Nanocrystals of phase-pure tin(II) selenide (SnSe) were synthesized via a solution-phase route employing stoichiometric amounts of di-tert-butyl diselenide as a novel and facile selenium source. The direct band gap of the resulting nanocrystals (E(g) = 1.71 eV) is significantly blue-shifted relative to the bulk value (E(g) = 1.30 eV), a likely consequence of quantum confinement resulting from the relatively small average diameter of the nanocrystals (mu(D) < 20 nm). Preliminary solar cell devices incorporating SnSe nanocrystals into a poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] matrix demonstrate a significant enhancement in quantum efficiency and short-circuit current density, suggesting that this earth-abundant material could be a valuable component in future photovoltaic devices.
通过采用化学计量比的二叔丁基二硒作为新型简便硒源的溶液相途径,合成了纯相锡(II)硒化物(SnSe)纳米晶体。所得纳米晶体的直接带隙(E(g)= 1.71 eV)明显蓝移相对于体值(E(g)= 1.30 eV),这可能是由于纳米晶体的相对较小的平均直径(μ(D)<20 nm)导致量子限制所致。将 SnSe 纳米晶体掺入聚[2-甲氧基-5-(3',7'-二甲氧基辛氧基)-1,4-亚苯基乙烯基]基质中的初步太阳能电池器件表现出量子效率和短路电流密度的显著提高,这表明这种丰富的地球材料在未来的光伏器件中可能是一种有价值的组件。