Suppr超能文献

使用由数据驱动分类器构建的多维相图对硒化铜进行预测合成。

Predictive Synthesis of Copper Selenides Using a Multidimensional Phase Map Constructed with a Data-Driven Classifier.

作者信息

Williamson Emily M, Sun Zhaohong, Tappan Bryce A, Brutchey Richard L

机构信息

Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.

出版信息

J Am Chem Soc. 2023 Aug 16;145(32):17954-17964. doi: 10.1021/jacs.3c05490. Epub 2023 Aug 4.

Abstract

Copper selenides are an important family of materials with applications in catalysis, plasmonics, photovoltaics, and thermoelectrics. Despite being a binary material system, the Cu-Se phase diagram is complex and contains multiple crystal structures in addition to several metastable structures that are not found on the thermodynamic phase diagram. Consequently, the ability to synthetically navigate this complex phase space poses a significant challenge. We demonstrate that data-driven learning can successfully map this phase space in a minimal number of experiments. We combine soft chemistry () synthetic methods with multivariate analyses via classification techniques to enable predictive phase determination. A surrogate model was constructed with experimental data derived from a design matrix of four experimental variables: C-Se bond strength of the selenium precursor, time, temperature, and solvent composition. The reactions in the surrogate model resulted in 11 distinct phase combinations of copper selenide. These data were used to train a classification model that predicts the phase with 95.7% accuracy. The resulting decision tree enabled conclusions to be drawn about how the experimental variables affect the phase and provided prescriptive synthetic conditions for specific phase isolation. This guided the accelerated phase targeting in a minimum number of experiments of klockmannite CuSe, which could not be isolated in any of the reactions used to construct the surrogate model. The reaction conditions that the model predicted to synthesize klockmannite CuSe were experimentally validated, highlighting the utility of this approach.

摘要

硒化铜是一类重要的材料,在催化、等离激元学、光伏和热电学等领域有应用。尽管是二元材料体系,但铜 - 硒相图很复杂,除了热力学相图上未出现的几种亚稳结构外,还包含多种晶体结构。因此,在这个复杂的相空间中进行合成操控具有重大挑战。我们证明,数据驱动的学习能够在最少的实验次数中成功绘制出这个相空间。我们将软化学合成方法与通过分类技术进行的多变量分析相结合,以实现预测性的相确定。利用从四个实验变量(硒前驱体的C - Se键强度、时间、温度和溶剂组成)的设计矩阵得出的实验数据构建了一个替代模型。替代模型中的反应产生了11种不同的硒化铜相组合。这些数据被用于训练一个分类模型,该模型预测相的准确率为95.7%。所得的决策树能够得出关于实验变量如何影响相的结论,并为特定相的分离提供规范性的合成条件。这在最少的实验次数中指导了对难以从用于构建替代模型的任何反应中分离出来的硫硒铜矿CuSe进行加速相靶向。该模型预测合成硫硒铜矿CuSe的反应条件经过了实验验证,突出了这种方法的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/421a/10436277/dc8ce6fdf854/ja3c05490_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验