Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA.
Biochemistry. 2010 May 25;49(20):4361-73. doi: 10.1021/bi100092a.
Transcription by all RNA polymerases (RNAPs) requires a series of large-scale conformational changes to form the transcriptionally competent open complex RP(o). At the lambdaP(R) promoter, Escherichia coli sigma(70) RNAP first forms a wrapped, closed 100 bp complex I(1). The subsequent step opens the entire DNA bubble, creating the relatively unstable (open) complex I(2). Additional conformational changes convert I(2) to the stable RP(o). Here we probe these events by dissecting the effects of Na(+) salts of Glu(-), F(-), and Cl(-) on each step in this critical process. Rapid mixing and nitrocellulose filter binding reveal that the binding constant for I(1) at 25 degrees C is approximately 30-fold larger in Glu(-) than in Cl(-) at the same Na(+) concentration, with the same log-log salt concentration dependence for both anions. In contrast, both the rate constant and equilibrium constant for DNA opening (I(1) to I(2)) are only weakly dependent on salt concentration, and the opening rate constant is insensitive to replacement of Cl(-) with Glu(-). These very small effects of salt concentration on a process (DNA opening) that is strongly dependent on salt concentration in solution may indicate that the backbones of both DNA strands interact with polymerase throughout the process and/or that compensation is present between ion uptake and release. Replacement of Cl(-) with Glu(-) or F(-) at 25 degrees C greatly increases the lifetime of RP(o) and greatly reduces its salt concentration dependence. By analogy to Hofmeister salt effects on protein folding, we propose that the excluded anions Glu(-) and F(-) drive the folding and assembly of the RNAP clamp/jaw domains in the conversion of I(2) to RP(o), while Cl(-) does not. Because the Hofmeister effect of Glu(-) or F(-) largely compensates for the destabilizing Coulombic effect of any salt on the binding of this assembly to downstream promoter DNA, RP(o) remains long-lived even at 0.5 M Na(+) in Glu(-) or F(-) salts. The observation that Esigma(70) RP(o) complexes are exceedingly long-lived at moderate to high Glu(-) concentrations argues that Esigma(70) RNAP does not dissociate from strong promoters in vivo when the cytoplasmic glutamate concentration increases during osmotic stress.
所有 RNA 聚合酶(RNAP)的转录都需要一系列大规模的构象变化,以形成具有转录能力的开放复合物 RP(o)。在 lambdaP(R)启动子上,大肠杆菌 sigma(70)RNAP 首先形成一个包裹的、封闭的 100bp 复合物 I(1)。随后的步骤打开整个 DNA 泡,形成相对不稳定的(开放)复合物 I(2)。进一步的构象变化将 I(2)转化为稳定的 RP(o)。在这里,我们通过剖析 Glu(-)、F(-)和 Cl(-)盐对这个关键过程中每个步骤的影响来研究这些事件。快速混合和硝酸纤维素滤膜结合实验表明,在 25°C 下,I(1)的结合常数在 Glu(-)中的约为 Cl(-)中的 30 倍,对于两种阴离子,盐浓度的对数-对数依赖性相同。相比之下,DNA 打开(I(1)到 I(2))的速率常数和平衡常数仅对盐浓度有微弱的依赖性,并且开放速率常数对 Cl(-)被 Glu(-)取代不敏感。在一个强烈依赖溶液中盐浓度的过程(DNA 打开)中,盐浓度对该过程的影响非常小,这可能表明两条 DNA 链的骨架在整个过程中都与聚合酶相互作用,或者在离子摄取和释放之间存在补偿。在 25°C 下用 Glu(-)或 F(-)代替 Cl(-)会大大增加 RP(o)的寿命,并大大降低其对盐浓度的依赖性。类比于对蛋白质折叠的 Hofmeister 盐效应,我们提出,排除的阴离子 Glu(-)和 F(-)在从 I(2)到 RP(o)的转化过程中驱动 RNA 聚合酶夹/颚结构域的折叠和组装,而 Cl(-)则没有。由于 Glu(-)或 F(-)的 Hofmeister 效应在很大程度上补偿了任何盐对这种组装物与下游启动子 DNA 结合的去稳定化库仑效应,因此即使在 Glu(-)或 F(-)盐中 0.5 M Na(+)的情况下,RP(o)仍然保持长寿命。在中等至高 Glu(-)浓度下,Esigma(70)RP(o)复合物的寿命非常长,这表明在渗透压应激期间细胞质谷氨酸浓度增加时,Esigma(70)RNAP 不会从强启动子上解离。