Suppr超能文献

一步 DNA 解链作用发生在 RNA 聚合酶的裂隙中,打开启动泡以形成不稳定的开放复合物。

One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex.

机构信息

Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10418-23. doi: 10.1073/pnas.1000967107. Epub 2010 May 18.

Abstract

Though opening of the start site (+1) region of promoter DNA is required for transcription by RNA polymerase (RNAP), surprisingly little is known about how and when this occurs in the mechanism. Early events at the lambdaP(R) promoter load this region of duplex DNA into the active site cleft of Escherichia coli RNAP, forming the closed, permanganate-unreactive intermediate I(1). Conversion to the subsequent intermediate I(2) overcomes a large enthalpic barrier. Is I(2) open? Here we create a burst of I(2) by rapidly destabilizing open complexes (RP(o)) with 1.1 M NaCl. Fast footprinting reveals that thymines at positions from -11 to +2 in I(2) are permanganate-reactive, demonstrating that RNAP opens the entire initiation bubble in the cleft in a single step. Rates of decay of all observed thymine reactivities are the same as the I(2) to I(1) conversion rate determined by filter binding. In I(2), permanganate reactivity of the +1 thymine on the template (t) strand is the same as the RP(o) control, whereas nontemplate (nt) thymines are significantly less reactive than in RP(o). We propose that: (i) the +1(t) thymine is in the active site in I(2); (ii) conversion of I(2) to RP(o) repositions the nt strand in the cleft; and (iii) movements of the nt strand are coupled to the assembly and DNA binding of the downstream clamp and jaw that occurs after DNA opening and stabilizes RP(o). We hypothesize that unstable open intermediates at the lambdaP(R) promoter resemble the unstable, transcriptionally competent open complexes formed at ribosomal promoters.

摘要

尽管 RNA 聚合酶(RNAP)转录需要启动子 DNA 的启动位点(+1)区域打开,但对于这种情况如何以及何时发生在机制中,人们知之甚少。λP(R)启动子的早期事件将该区域的双链 DNA 加载到大肠杆菌 RNAP 的活性位点裂隙中,形成封闭的、高锰酸盐不反应的中间体 I(1)。转换到随后的中间体 I(2)克服了很大的焓垒。I(2)是开放的吗?在这里,我们通过用 1.1 M NaCl 快速破坏开放复合物 (RP(o)) 来产生 I(2)的爆发。快速足迹揭示了在 I(2)中位置从-11 到+2 的胸腺嘧啶对高锰酸盐是反应性的,这表明 RNAP 在一个步骤中打开裂隙中的整个起始泡。所有观察到的胸腺嘧啶反应性的衰减速率与通过过滤结合确定的 I(2)到 I(1)转换速率相同。在 I(2)中,模板 (t)链上的+1 胸腺嘧啶对高锰酸盐的反应性与 RP(o)对照相同,而非模板 (nt)胸腺嘧啶的反应性明显低于 RP(o)。我们提出:(i) +1(t)胸腺嘧啶位于 I(2)的活性位点中;(ii) I(2)到 RP(o)的转换重新定位了裂隙中的 nt 链;和 (iii) nt 链的运动与下游夹和颌的组装和 DNA 结合相关,这发生在 DNA 打开和稳定 RP(o)之后。我们假设 λP(R)启动子上不稳定的开放中间物类似于在核糖体启动子上形成的不稳定的、转录功能的开放复合物。

相似文献

1
One-step DNA melting in the RNA polymerase cleft opens the initiation bubble to form an unstable open complex.
Proc Natl Acad Sci U S A. 2010 Jun 8;107(23):10418-23. doi: 10.1073/pnas.1000967107. Epub 2010 May 18.
3
Key roles of the downstream mobile jaw of Escherichia coli RNA polymerase in transcription initiation.
Biochemistry. 2012 Nov 27;51(47):9447-59. doi: 10.1021/bi301260u. Epub 2012 Nov 14.
4
Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.
J Mol Biol. 2014 Dec 12;426(24):3973-3984. doi: 10.1016/j.jmb.2014.10.005. Epub 2014 Oct 13.
5
The effects of upstream DNA on open complex formation by Escherichia coli RNA polymerase.
Proc Natl Acad Sci U S A. 2005 Jan 11;102(2):285-90. doi: 10.1073/pnas.0405779102. Epub 2004 Dec 30.
7
Real-time footprinting of DNA in the first kinetically significant intermediate in open complex formation by Escherichia coli RNA polymerase.
Proc Natl Acad Sci U S A. 2007 May 8;104(19):7833-8. doi: 10.1073/pnas.0609888104. Epub 2007 Apr 30.

引用本文的文献

1
Targeting Bacterial RNA Polymerase: Harnessing Simulations and Machine Learning to Design Inhibitors for Drug-Resistant Pathogens.
Biochemistry. 2025 Mar 18;64(6):1169-1179. doi: 10.1021/acs.biochem.4c00751. Epub 2025 Feb 27.
2
Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy.
Nat Struct Mol Biol. 2024 Nov;31(11):1778-1788. doi: 10.1038/s41594-024-01349-9. Epub 2024 Jul 1.
4
Macromolecular crowding has opposite effects on two critical sub-steps of transcription initiation.
FEBS Lett. 2024 May;598(9):1022-1033. doi: 10.1002/1873-3468.14851. Epub 2024 Mar 13.
5
7
Step-by-Step Regulation of Productive and Abortive Transcription Initiation by Pyrophosphorolysis.
J Mol Biol. 2022 Jul 15;434(13):167621. doi: 10.1016/j.jmb.2022.167621. Epub 2022 May 6.
8
Structural origins of RNA polymerase open promoter complex stability.
Proc Natl Acad Sci U S A. 2021 Oct 5;118(40). doi: 10.1073/pnas.2112877118.

本文引用的文献

2
Structure of an RNA polymerase II-TFIIB complex and the transcription initiation mechanism.
Science. 2010 Jan 8;327(5962):206-9. doi: 10.1126/science.1182015. Epub 2009 Nov 12.
3
RNA polymerase II-TFIIB structure and mechanism of transcription initiation.
Nature. 2009 Nov 19;462(7271):323-30. doi: 10.1038/nature08548.
5
Direct detection of abortive RNA transcripts in vivo.
Science. 2009 May 15;324(5929):927-8. doi: 10.1126/science.1169237.
6
Allosteric control of Escherichia coli rRNA promoter complexes by DksA.
Genes Dev. 2009 Jan 15;23(2):236-48. doi: 10.1101/gad.1745409.
8
Transcription inactivation through local refolding of the RNA polymerase structure.
Nature. 2009 Jan 15;457(7227):332-5. doi: 10.1038/nature07510. Epub 2008 Oct 22.
9
Advances in bacterial promoter recognition and its control by factors that do not bind DNA.
Nat Rev Microbiol. 2008 Jul;6(7):507-19. doi: 10.1038/nrmicro1912. Epub 2008 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验