维纳-格兰杰因果关系:一种成熟的方法。
Wiener-Granger causality: a well established methodology.
机构信息
Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, FL, USA.
出版信息
Neuroimage. 2011 Sep 15;58(2):323-9. doi: 10.1016/j.neuroimage.2010.02.059. Epub 2010 Mar 2.
For decades, the main ways to study the effect of one part of the nervous system upon another have been either to stimulate or lesion the first part and investigate the outcome in the second. This article describes a fundamentally different approach to identifying causal connectivity in neuroscience: a focus on the predictability of ongoing activity in one part from that in another. This approach was made possible by a new method that comes from the pioneering work of Wiener (1956) and Granger (1969). The Wiener-Granger method, unlike stimulation and ablation, does not require direct intervention in the nervous system. Rather, it relies on the estimation of causal statistical influences between simultaneously recorded neural time series data, either in the absence of identifiable behavioral events or in the context of task performance. Causality in the Wiener-Granger sense is based on the statistical predictability of one time series that derives from knowledge of one or more others. This article defines Wiener-Granger Causality, discusses its merits and limitations in neuroscience, and outlines recent developments in its implementation.
几十年来,研究神经系统的一部分对另一部分的影响的主要方法是刺激或损伤第一部分,然后研究第二部分的结果。本文描述了一种在神经科学中识别因果关系的完全不同的方法:关注一个部分的持续活动对另一个部分的可预测性。这种方法之所以成为可能,是因为 Wiener(1956 年)和 Granger(1969 年)的开创性工作带来了一种新方法。Wiener-Granger 方法与刺激和消融不同,它不需要对神经系统进行直接干预。相反,它依赖于对同时记录的神经时间序列数据之间的因果统计影响的估计,无论是在没有可识别的行为事件的情况下,还是在任务执行的情况下。Wiener-Granger 意义上的因果关系基于一个时间序列的统计可预测性,该预测性源于对一个或多个其他时间序列的了解。本文定义了 Wiener-Granger 因果关系,讨论了它在神经科学中的优点和局限性,并概述了其实施的最新进展。