Howard Hughes Medical Institute, Department of Physiological Science, University of California, Los Angeles, 90095, USA.
Curr Opin Neurobiol. 2010 Jun;20(3):347-52. doi: 10.1016/j.conb.2010.02.002. Epub 2010 Mar 2.
Engineered tracking systems 'fuse' data from disparate sensor platforms, such as radar and video, to synthesize information that is more reliable than any single input. The mammalian brain registers visual and auditory inputs to directionally localize an interesting environmental feature. For a fly, sensory perception is challenged by the extreme performance demands of high speed flight. Yet even a fruit fly can robustly track a fragmented odor plume through varying visual environments, outperforming any human engineered robot. Flies integrate disparate modalities, such as vision and olfaction, which are neither related by spatiotemporal spectra nor processed by registered neural tissue maps. Thus, the fly is motivating new conceptual frameworks for how low-level multisensory circuits and functional algorithms produce high-performance motor control.
工程化的跟踪系统“融合”了来自不同传感器平台的数据,如雷达和视频,以综合比任何单一输入更可靠的信息。哺乳动物大脑注册视觉和听觉输入,以定向定位有趣的环境特征。对于苍蝇来说,感官感知受到高速飞行的极端性能要求的挑战。然而,即使是一只果蝇也可以通过不断变化的视觉环境中强大地跟踪碎片化的气味羽流,其性能超过任何人类工程机器人。苍蝇整合了不同的模式,如视觉和嗅觉,这些模式既没有时空谱的关系,也没有通过注册的神经组织图谱进行处理。因此,苍蝇正在为低水平多感觉电路和功能算法如何产生高性能运动控制提供新的概念框架。