Suppr超能文献

为纳米光子片上光互连重构锗雪崩光电探测器。

Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects.

机构信息

IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA.

出版信息

Nature. 2010 Mar 4;464(7285):80-4. doi: 10.1038/nature08813.

Abstract

Integration of optical communication circuits directly into high-performance microprocessor chips can enable extremely powerful computer systems. A germanium photodetector that can be monolithically integrated with silicon transistor technology is viewed as a key element in connecting chip components with infrared optical signals. Such a device should have the capability to detect very-low-power optical signals at very high speed. Although germanium avalanche photodetectors (APD) using charge amplification close to avalanche breakdown can achieve high gain and thus detect low-power optical signals, they are universally considered to suffer from an intolerably high amplification noise characteristic of germanium. High gain with low excess noise has been demonstrated using a germanium layer only for detection of light signals, with amplification taking place in a separate silicon layer. However, the relatively thick semiconductor layers that are required in such structures limit APD speeds to about 10 GHz, and require excessively high bias voltages of around 25 V (ref. 12). Here we show how nanophotonic and nanoelectronic engineering aimed at shaping optical and electrical fields on the nanometre scale within a germanium amplification layer can overcome the otherwise intrinsically poor noise characteristics, achieving a dramatic reduction of amplification noise by over 70 per cent. By generating strongly non-uniform electric fields, the region of impact ionization in germanium is reduced to just 30 nm, allowing the device to benefit from the noise reduction effects that arise at these small distances. Furthermore, the smallness of the APDs means that a bias voltage of only 1.5 V is required to achieve an avalanche gain of over 10 dB with operational speeds exceeding 30 GHz. Monolithic integration of such a device into computer chips might enable applications beyond computer optical interconnects-in telecommunications, secure quantum key distribution, and subthreshold ultralow-power transistors.

摘要

将光通信电路直接集成到高性能微处理器芯片中,可以实现极其强大的计算机系统。锗光电探测器可以与硅晶体管技术单片集成,被视为将芯片组件与红外光信号连接的关键元件。这种器件应该具有以非常高的速度检测极低功率光信号的能力。虽然使用接近雪崩击穿的电荷放大的锗雪崩光电二极管(APD)可以实现高增益,从而检测低功率光信号,但普遍认为它们具有无法忍受的锗放大噪声特性。仅使用锗层进行光信号检测,并在单独的硅层中进行放大,已经证明了具有低噪声的高增益。然而,这种结构所需的相对较厚的半导体层将 APD 速度限制在约 10 GHz,并且需要过高的偏置电压约 25 V(参考文献 12)。在这里,我们展示了如何通过纳米光子学和纳米电子工程来塑造锗放大层内的纳米尺度的光学和电场,从而克服原本固有较差的噪声特性,实现超过 70%的放大噪声的显著降低。通过产生强烈的非均匀电场,将锗中的碰撞电离区域减小到仅 30nm,使器件受益于这些小距离产生的噪声降低效应。此外,APD 的小型化意味着仅需 1.5 V 的偏置电压即可实现超过 10 dB 的雪崩增益,并且工作速度超过 30 GHz。将这种器件单片集成到计算机芯片中,可能会实现超越计算机光互连的应用——在电信、安全量子密钥分发和亚阈值超低功耗晶体管中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验