Khatoon Najma, Subedi Binod, Chrisey Douglas B
Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118.
ChemistryOpen. 2024 Jul;13(7):e202300260. doi: 10.1002/open.202300260. Epub 2024 Feb 2.
Silicon and Germanium oxide (SiO and GeO) nanostructures are promising materials for energy storage applications due to their potentially high energy density, large lithiation capacity (~10X carbon), low toxicity, low cost, and high thermal stability. This work reports a unique approach to achieving controlled synthesis of SiO and GeO nanostructures via photonic curing. Unlike conventional methods like rapid thermal annealing, quenching during pulsed photonic curing occurs rapidly (sub-millisecond), allowing the trapping of metastable states to form unique phases and nanostructures. We explored the possible underlying mechanism of photonic curing by incorporating laws of photophysics, photochemistry, and simulated temperature profile of thin film. The results show that photonic curing of spray coated 0.1 M molarity Si and Ge Acetyl Acetate precursor solution, at total fluence 80 J cm can yield GeO and SiO nanostructures. The as-synthesized nanostructures are ester functionalized due to photoinitiated chemical reactions in thin film during photonic curing. Results also showed that nanoparticle size changes from ~48 nm to ~11 nm if overall fluence is increased by increasing the number of pulses. These results are an important contribution towards large-scale synthesis of the Ge and Si oxide nanostructured materials which is necessary for next-generation energy storage devices.
氧化硅和氧化锗(SiO和GeO)纳米结构因其潜在的高能量密度、大的锂化容量(约为碳的10倍)、低毒性、低成本和高热稳定性,是储能应用中有前景的材料。这项工作报道了一种通过光子固化实现SiO和GeO纳米结构可控合成的独特方法。与快速热退火等传统方法不同,脉冲光子固化过程中的淬火迅速发生(亚毫秒级),使得亚稳态得以捕获,从而形成独特的相和纳米结构。我们通过结合光物理、光化学定律以及薄膜模拟温度分布,探索了光子固化可能的潜在机制。结果表明,对喷雾涂覆的0.1 M摩尔浓度的硅和锗乙酰丙酮前驱体溶液进行光子固化,在总通量为80 J/cm²时可生成GeO和SiO纳米结构。在光子固化过程中,由于薄膜中的光引发化学反应,合成的纳米结构被酯官能化。结果还表明,如果通过增加脉冲数来提高总通量,纳米颗粒尺寸会从约48 nm变为约11 nm。这些结果对大规模合成锗和硅氧化物纳米结构材料做出了重要贡献,而这对于下一代储能设备是必不可少的。