Laboratoire de Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR-5234 CNRS, Université Victor Segalen Bordeaux 2, Bordeaux, France.
PLoS Negl Trop Dis. 2010 Mar 2;4(3):e618. doi: 10.1371/journal.pntd.0000618.
Animal African trypanosomosis, a disease mainly caused by the protozoan parasite Trypanosoma congolense, is a major constraint to livestock productivity and has a significant impact in the developing countries of Africa. RNA interference (RNAi) has been used to study gene function and identify drug and vaccine targets in a variety of organisms including trypanosomes. However, trypanosome RNAi studies have mainly been conducted in T. brucei, as a model for human infection, largely ignoring livestock parasites of economical importance such as T. congolense, which displays different pathogenesis profiles. The whole T. congolense life cycle can be completed in vitro, but this attractive model displayed important limitations: (i) genetic tools were currently limited to insect forms and production of modified infectious BSF through differentiation was never achieved, (ii) in vitro differentiation techniques lasted several months, (iii) absence of long-term bloodstream forms (BSF) in vitro culture prevented genomic analyses.
METHODOLOGY/PRINCIPAL FINDINGS: We optimized culture conditions for each developmental stage and secured the differentiation steps. Specifically, we devised a medium adapted for the strenuous development of stable long-term BSF culture. Using Amaxa nucleofection technology, we greatly improved the transfection rate of the insect form and designed an inducible transgene expression system using the IL3000 reference strain. We tested it by expression of reporter genes and through RNAi. Subsequently, we achieved the complete in vitro life cycle with dramatically shortened time requirements for various wild type and transgenic strains. Finally, we established the use of modified strains for experimental infections and underlined a host adaptation phase requirement.
CONCLUSIONS/SIGNIFICANCE: We devised an improved T. congolense model, which offers the opportunity to perform functional genomics analyses throughout the whole life cycle. It represents a very useful tool to understand pathogenesis mechanisms and to study potential therapeutic targets either in vitro or in vivo using a mouse model.
动物冈比亚锥虫病主要由原生动物寄生虫冈比亚锥虫引起,是畜牧业生产力的主要制约因素,对非洲发展中国家有重大影响。RNA 干扰(RNAi)已被用于研究基因功能,并在包括锥虫在内的多种生物中鉴定药物和疫苗靶点。然而,锥虫 RNAi 研究主要在 T. brucei 中进行,作为人类感染的模型,而很大程度上忽略了具有经济重要性的牲畜寄生虫,如冈比亚锥虫,后者表现出不同的发病机制。整个冈比亚锥虫的生命周期可以在体外完成,但这种有吸引力的模型显示出重要的局限性:(i)遗传工具目前仅限于昆虫形式,并且从未通过分化产生改性的感染性 BSF,(ii)体外分化技术耗时数月,(iii)缺乏长期的血液期(BSF)体外培养阻止了基因组分析。
方法/主要发现:我们优化了每个发育阶段的培养条件,并确保了分化步骤。具体来说,我们设计了一种适用于稳定长期 BSF 培养的艰苦发展的培养基。我们使用 Amaxa 核转染技术极大地提高了昆虫形式的转染率,并使用 IL3000 参考菌株设计了一种诱导型转基因表达系统。我们通过报告基因的表达和 RNAi 对其进行了测试。随后,我们通过缩短各种野生型和转基因菌株的时间要求,实现了完整的体外生命周期。最后,我们建立了使用改性菌株进行实验感染的方法,并强调了宿主适应阶段的要求。
结论/意义:我们设计了一种改进的冈比亚锥虫模型,它为整个生命周期的功能基因组学分析提供了机会。它是一种非常有用的工具,可以在体外或体内使用小鼠模型来研究发病机制和潜在的治疗靶点。