Departments of Materials and Interfaces, Weizmann Institute of Science, POB 26, Rehovot 76100, Israel.
J Am Chem Soc. 2010 Mar 31;132(12):4131-40. doi: 10.1021/ja907328r.
Electron transfer (ET) through proteins, a fundamental element of many biochemical reactions, is studied intensively in aqueous solutions. Over the past decade, attempts were made to integrate proteins into solid-state junctions in order to study their electronic conductance properties. Most such studies to date were conducted with one or very few molecules in the junction, using scanning probe techniques. Here we present the high-yield, reproducible preparation of large-area monolayer junctions, assembled on a Si platform, of proteins of three different families: azurin (Az), a blue-copper ET protein, bacteriorhodopsin (bR), a membrane protein-chromophore complex with a proton pumping function, and bovine serum albumin (BSA). We achieve highly reproducible electrical current measurements with these three types of monolayers using appropriate top electrodes. Notably, the current-voltage (I-V) measurements on such junctions show relatively minor differences between Az and bR, even though the latter lacks any known ET function. Electron Transport (ETp) across both Az and bR is much more efficient than across BSA, but even for the latter the measured currents are higher than those through a monolayer of organic, C18 alkyl chains that is about half as wide, therefore suggesting transport mechanism(s) different from the often considered coherent mechanism. Our results show that the employed proteins maintain their conformation under these conditions. The relatively efficient ETp through these proteins opens up possibilities for using such biomolecules as current-carrying elements in solid-state electronic devices.
电子转移(ET)是许多生化反应的基本要素,在水溶液中被广泛研究。在过去的十年中,人们试图将蛋白质整合到固态结中,以研究它们的电子电导性质。迄今为止,大多数此类研究都是使用扫描探针技术在结中进行的,其中包含一个或很少几个分子。在这里,我们提出了一种高产率、可重复的方法,用于在 Si 平台上制备三种不同家族的蛋白质的大面积单层结:蓝铜蛋白(Az),一种具有电子转移功能的蓝色铜 ET 蛋白、细菌视紫红质(bR),一种具有质子泵功能的膜蛋白-发色团复合物,以及牛血清白蛋白(BSA)。我们使用适当的顶电极对这三种类型的单层膜进行了高度可重复的电流测量。值得注意的是,即使 bR 缺乏任何已知的 ET 功能,这种结的电流-电压(I-V)测量结果在 Az 和 bR 之间也几乎没有差异。与 BSA 相比,Az 和 bR 的 ETp 效率更高,但即使对于 BSA,测量的电流也高于有机 C18 烷基单层的电流,后者的宽度约为一半,因此表明传输机制不同于通常考虑的相干机制。我们的结果表明,所使用的蛋白质在这些条件下保持其构象。这些蛋白质相对高效的 ETp 为在固态电子设备中使用此类生物分子作为电流承载元件开辟了可能性。