Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
Optoelectronics Group, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK.
Nat Commun. 2022 Apr 28;13(1):2312. doi: 10.1038/s41467-022-30038-8.
This paper describes the fabrication of digital logic circuits comprising resistors and diodes made from protein complexes and wired together using printed liquid metal electrodes. These resistors and diodes exhibit temperature-independent charge-transport over a distance of approximately 10 nm and require no encapsulation or special handling. The function of the protein complexes is determined entirely by self-assembly. When induced to self-assembly into anisotropic monolayers, the collective action of the aligned dipole moments increases the electrical conductivity of the ensemble in one direction and decreases it in the other. When induced to self-assemble into isotropic monolayers, the dipole moments are randomized and the electrical conductivity is approximately equal in both directions. We demonstrate the robustness and utility of these all-protein logic circuits by constructing pulse modulators based on AND and OR logic gates that function nearly identically to simulated circuits. These results show that digital circuits with useful functionality can be derived from readily obtainable biomolecules using simple, straightforward fabrication techniques that exploit molecular self-assembly, realizing one of the primary goals of molecular electronics.
本文描述了使用印刷液态金属电极将由蛋白质复合物制成的电阻器和二极管连接在一起,从而构建数字逻辑电路的过程。这些电阻器和二极管在大约 10nm 的距离内表现出与温度无关的电荷输运,并且不需要封装或特殊处理。蛋白质复合物的功能完全由自组装决定。当被诱导自组装成各向异性单层时,对齐偶极矩的集体作用会增加一个方向上的整体电导率,而减小另一个方向上的电导率。当被诱导自组装成各向同性单层时,偶极矩被随机化,两个方向上的电导率大致相等。我们通过构建基于与非和或门的脉冲调制器来证明这些全蛋白质逻辑电路的稳健性和实用性,这些逻辑门的功能与模拟电路几乎相同。这些结果表明,使用简单直接的制造技术,从易于获得的生物分子中可以得到具有有用功能的数字电路,这些技术利用了分子自组装,实现了分子电子学的主要目标之一。