Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel.
The School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Maruthamala, Kerala 695551, India.
Langmuir. 2023 Jan 31;39(4):1394-1403. doi: 10.1021/acs.langmuir.2c02378. Epub 2023 Jan 17.
The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode-protein monolayer-microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our results on compactly integrated, dense, uniform, ∼3 nm thick STV monolayers indicate that, notwithstanding the slight structural changes in the STV monolayers upon biotin binding, there is no statistically significant conductance change between the free STV and that bound to biotin. The ETp temperature (T) dependence over the 80-300 K range is very small but with an unusual, slightly negative (metallic-like) dependence toward room temperature. Such dependence can be accounted for by the reversible structural shrinkage of the STV at temperatures below 160 K.
电子传输 (ETp) 效率在固态蛋白介导的结中高度受到富含电子的有机辅因子或过渡金属离子的存在影响。因此,我们选择研究一种有趣的非氧化还原蛋白——链霉亲和素 (STV),它对有机小分子配体生物素具有无与伦比的强结合亲和力,而生物素缺乏任何富含电子的特征。我们首次描述了通过 STV 单层的电结进行的中尺度 ETp,并关注 ETp 穿过天然和巯基化 STV 单层的速率是否受到配体结合的影响,我们表明该过程会导致 STV 单层的一些结构构象变化。Au 纳米线-电极-蛋白单层-微电极结,通过修改早期的程序来提高可用结的产量来制备,用于 ETp 测量。我们对紧密集成、密集、均匀、∼3nm 厚 STV 单层的结果表明,尽管生物素结合后 STV 单层略有结构变化,但在游离 STV 和与生物素结合的 STV 之间没有统计学上显著的电导变化。ETp 温度 (T) 依赖性在 80-300 K 范围内非常小,但对室温有不寻常的略微负 (金属样) 依赖性。这种依赖性可以通过 STV 在低于 160 K 的温度下的可逆结构收缩来解释。