Suppr超能文献

结构光照明显著提高了厚组织荧光成像的分辨率和对比度。

Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging.

出版信息

J Biomed Opt. 2010 Jan-Feb;15(1):010506. doi: 10.1117/1.3299321.

Abstract

We introduce a noncontact imaging method utilizing multifrequency structured illumination for improving lateral and axial resolution and contrast of fluorescent molecular probes in thick, multiple-scattering tissue phantoms. The method can be implemented rapidly using a spatial light modulator and a simple image demodulation scheme similar to structured light microscopy in the diffraction regime. However, imaging is performed in the multiple-scattering regime utilizing spatially modulated scalar photon density waves. We demonstrate that by increasing the structured light spatial frequency, fluorescence from deeper structures is suppressed and signals from more superficial objects enhanced. By measuring the spatial frequency dependence of fluorescence, background can be reduced by localizing the signal to a buried fluorescent object. Overall, signal-to-background ratio (SBR) and resolution improvements are dependent on spatial frequency and object depth/dimension with as much as sevenfold improvement in SBR and 33% improvement in resolution for approximately 1-mm objects buried 3 mm below the surface in tissue-like media with fluorescent background.

摘要

我们介绍了一种利用多频结构光照相的非接触成像方法,以提高在厚的、多散射组织体模中的荧光分子探针的横向和轴向分辨率和对比度。该方法可以使用空间光调制器和类似于结构光显微镜在衍射模式下的简单图像解调方案快速实现。然而,成像在多散射区域中利用空间调制的标量光子密度波来进行。我们证明,通过增加结构光的空间频率,可以抑制来自较深结构的荧光,并增强来自更浅层物体的信号。通过测量荧光的空间频率依赖性,可以将信号定位到埋置的荧光物体上来减少背景。总的来说,信号与背景比(SBR)和分辨率的提高取决于空间频率和物体的深度/尺寸,对于埋置于类似组织的介质中深度为 3mm 的约 1mm 物体,SBR 提高了七倍,分辨率提高了 33%,荧光背景下的分辨率提高了七倍,而分辨率提高了 33%。

相似文献

1
Structured illumination enhances resolution and contrast in thick tissue fluorescence imaging.
J Biomed Opt. 2010 Jan-Feb;15(1):010506. doi: 10.1117/1.3299321.
2
Super-resolution two-photon microscopy via scanning patterned illumination.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):042703. doi: 10.1103/PhysRevE.91.042703. Epub 2015 Apr 7.
4
Structured illumination microscopy artefacts caused by illumination scattering.
Philos Trans A Math Phys Eng Sci. 2021 Jun 14;379(2199):20200153. doi: 10.1098/rsta.2020.0153. Epub 2021 Apr 26.
6
Improved spatial resolution in fluorescence focal modulation microscopy.
Opt Lett. 2009 Nov 15;34(22):3508-10. doi: 10.1364/OL.34.003508.
7
Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination.
Biophys J. 2008 Jun;94(12):4957-70. doi: 10.1529/biophysj.107.120345. Epub 2008 Mar 7.
9
Photobleaching imprinting microscopy: seeing clearer and deeper.
J Cell Sci. 2014 Jan 15;127(Pt 2):288-94. doi: 10.1242/jcs.142943. Epub 2013 Dec 6.
10
Plane-wave fluorescence tomography with adaptive finite elements.
Opt Lett. 2006 Jan 15;31(2):193-5. doi: 10.1364/ol.31.000193.

引用本文的文献

1
near-infrared fluorescent fibrin highlights growth of nerve during regeneration across a nerve gap.
J Biomed Opt. 2022 Jul;27(7):070502. doi: 10.1117/1.JBO.27.7.070502. Epub 2022 Jul 20.
2
Numerical Simulation of a Scanning Illumination System for Deep Tissue Fluorescence Imaging.
J Imaging. 2019 Oct 24;5(11):83. doi: 10.3390/jimaging5110083.
4
Propagation of time-resolved fluorescence in a diffuse medium: complex analytical derivation.
J Opt Soc Am A Opt Image Sci Vis. 2020 May 1;37(5):859-864. doi: 10.1364/JOSAA.388762.
5
Fluorescence imaging reversion using spatially variant deconvolution.
Sci Rep. 2019 Dec 2;9(1):18123. doi: 10.1038/s41598-019-54578-0.
6
Spatial frequency domain imaging in 2019: principles, applications, and perspectives.
J Biomed Opt. 2019 Jun;24(7):1-18. doi: 10.1117/1.JBO.24.7.071613.
7
Tomographic fluorescence lifetime multiplexing in the spatial frequency domain.
Optica. 2018 May;5(5):624-627. doi: 10.1364/OPTICA.5.000624. Epub 2018 May 15.
8
Microvascular imaging of the skin.
Phys Med Biol. 2019 Mar 21;64(7):07TR01. doi: 10.1088/1361-6560/ab03f1.
9
Quantitative subsurface spatial frequency-domain fluorescence imaging for enhanced glioma resection.
J Biophotonics. 2019 May;12(5):e201800271. doi: 10.1002/jbio.201800271. Epub 2019 Mar 20.
10
Review of structured light in diffuse optical imaging.
J Biomed Opt. 2018 Sep;24(7):1-20. doi: 10.1117/1.JBO.24.7.071602.

本文引用的文献

2
Quantitation and mapping of tissue optical properties using modulated imaging.
J Biomed Opt. 2009 Mar-Apr;14(2):024012. doi: 10.1117/1.3088140.
3
Temporal propagation of spatial information in turbid media.
Opt Lett. 2008 Dec 1;33(23):2836-8. doi: 10.1364/ol.33.002836.
4
Method of obtaining optical sectioning by using structured light in a conventional microscope.
Opt Lett. 1997 Dec 15;22(24):1905-7. doi: 10.1364/ol.22.001905.
7
Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging.
Phys Med Biol. 2005 Dec 7;50(23):5421-41. doi: 10.1088/0031-9155/50/23/001. Epub 2005 Nov 8.
8
Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13081-6. doi: 10.1073/pnas.0406877102. Epub 2005 Sep 2.
10
Looking and listening to light: the evolution of whole-body photonic imaging.
Nat Biotechnol. 2005 Mar;23(3):313-20. doi: 10.1038/nbt1074.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验