Suppr超能文献

将钠潴留与高血压联系起来的信号传导机制:内源性哇巴因、钠泵、钠/钙交换体和瞬时受体电位通道蛋白

Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins.

作者信息

Blaustein Mordecai P, Hamlyn John M

机构信息

Department of Physiology, University of Maryland School of Medicine, USA.

出版信息

Biochim Biophys Acta. 2010 Dec;1802(12):1219-29. doi: 10.1016/j.bbadis.2010.02.011. Epub 2010 Mar 6.

Abstract

Salt retention as a result of chronic, excessive dietary salt intake, is widely accepted as one of the most common causes of hypertension. In a small minority of cases, enhanced Na(+) reabsorption by the kidney can be traced to specific genetic defects of salt transport, or pathological conditions of the kidney, adrenal cortex, or pituitary. Far more frequently, however, salt retention may be the result of minor renal injury or small genetic variation in renal salt transport mechanisms. How salt retention actually leads to the increase in peripheral vascular resistance (the hallmark of hypertension) and the elevation of blood pressure remains an enigma. Here we review the evidence that endogenous ouabain (an adrenocortical hormone), arterial smooth muscle α2 Na(+) pumps, type-1 Na/Ca exchangers, and receptor- and store-operated Ca(2+) channels play key roles in the pathway that links salt to hypertension. We discuss cardenolide structure-function relationships in an effort to understand why prolonged administration of ouabain, but not digoxin, induces hypertension, and why digoxin is actually anti-hypertensive. Finally, we summarize recent observations which indicate that ouabain upregulates arterial myocyte Ca(2+) signaling mechanisms that promote vasoconstriction, while simultaneously downregulating endothelial vasodilator mechanisms. In sum, the reports reviewed here provide novel insight into the molecular mechanisms by which salt retention leads to hypertension.

摘要

长期过量摄入膳食盐导致的钠潴留,被广泛认为是高血压最常见的病因之一。在少数情况下,肾脏对Na(+)重吸收增强可追溯到盐转运的特定基因缺陷,或肾脏、肾上腺皮质或垂体的病理状况。然而,更常见的是,钠潴留可能是轻微肾损伤或肾盐转运机制的微小基因变异所致。钠潴留实际上如何导致外周血管阻力增加(高血压的标志)和血压升高仍是一个谜。在此,我们综述了内源性哇巴因(一种肾上腺皮质激素)、动脉平滑肌α2 Na(+)泵、1型Na/Ca交换体以及受体和储存操纵性Ca(2+)通道在将盐与高血压联系起来的途径中起关键作用的证据。我们讨论强心甾结构 - 功能关系,以试图理解为什么长期给予哇巴因而非地高辛会诱发高血压,以及为什么地高辛实际上具有抗高血压作用。最后,我们总结了最近的观察结果,这些结果表明哇巴因上调促进血管收缩的动脉肌细胞Ca(2+)信号传导机制,同时下调内皮舒张机制。总之,本文综述的报告为钠潴留导致高血压的分子机制提供了新的见解。

相似文献

1
Signaling mechanisms that link salt retention to hypertension: endogenous ouabain, the Na(+) pump, the Na(+)/Ca(2+) exchanger and TRPC proteins.
Biochim Biophys Acta. 2010 Dec;1802(12):1219-29. doi: 10.1016/j.bbadis.2010.02.011. Epub 2010 Mar 6.
2
Nanomolar ouabain increases NCX1 expression and enhances Ca2+ signaling in human arterial myocytes: a mechanism that links salt to increased vascular resistance?
Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H784-94. doi: 10.1152/ajpheart.00399.2012. Epub 2012 Jul 27.
3
The pump, the exchanger, and the holy spirit: origins and 40-year evolution of ideas about the ouabain-Na pump endocrine system.
Am J Physiol Cell Physiol. 2018 Jan 1;314(1):C3-C26. doi: 10.1152/ajpcell.00196.2017. Epub 2017 Nov 7.
4
Activation of c-SRC underlies the differential effects of ouabain and digoxin on Ca(2+) signaling in arterial smooth muscle cells.
Am J Physiol Cell Physiol. 2013 Feb 15;304(4):C324-33. doi: 10.1152/ajpcell.00337.2012. Epub 2012 Nov 28.
5
How does salt retention raise blood pressure?
Am J Physiol Regul Integr Comp Physiol. 2006 Mar;290(3):R514-23. doi: 10.1152/ajpregu.00819.2005.
6
Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats.
Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H263-74. doi: 10.1152/ajpheart.00784.2009. Epub 2009 Nov 6.
8
Upregulation of Na+/Ca2+ exchanger and TRPC6 contributes to abnormal Ca2+ homeostasis in arterial smooth muscle cells from Milan hypertensive rats.
Am J Physiol Heart Circ Physiol. 2010 Sep;299(3):H624-33. doi: 10.1152/ajpheart.00356.2010. Epub 2010 Jul 9.
9
Endogenous ouabain in renal Na(+) handling and related diseases.
Biochim Biophys Acta. 2010 Dec;1802(12):1214-8. doi: 10.1016/j.bbadis.2010.03.001. Epub 2010 Mar 11.
10
Arterial α2-Na+ pump expression influences blood pressure: lessons from novel, genetically engineered smooth muscle-specific α2 mice.
Am J Physiol Heart Circ Physiol. 2015 Sep;309(5):H958-68. doi: 10.1152/ajpheart.00430.2015. Epub 2015 Jul 24.

引用本文的文献

1
The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension.
Clin Sci (Lond). 2023 Oct 31;137(20):1595-1618. doi: 10.1042/CS20220796.
5
Cardiac Glycoside Research?
Toxins (Basel). 2021 May 11;13(5):344. doi: 10.3390/toxins13050344.
7
Cardiotonic Steroids-A Possible Link Between High-Salt Diet and Organ Damage.
Int J Mol Sci. 2019 Jan 30;20(3):590. doi: 10.3390/ijms20030590.
9
The Na,K-ATPase-Dependent Src Kinase Signaling Changes with Mesenteric Artery Diameter.
Int J Mol Sci. 2018 Aug 23;19(9):2489. doi: 10.3390/ijms19092489.
10
Heterogeneity of signal transduction by Na-K-ATPase α-isoforms: role of Src interaction.
Am J Physiol Cell Physiol. 2018 Feb 1;314(2):C202-C210. doi: 10.1152/ajpcell.00124.2017. Epub 2017 Nov 8.

本文引用的文献

1
Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L-type Ca2+ channel current and lowers blood pressure.
Am J Physiol Heart Circ Physiol. 2010 May;298(5):H1472-83. doi: 10.1152/ajpheart.00964.2009. Epub 2010 Feb 19.
2
Upregulation of Na+ and Ca2+ transporters in arterial smooth muscle from ouabain-induced hypertensive rats.
Am J Physiol Heart Circ Physiol. 2010 Jan;298(1):H263-74. doi: 10.1152/ajpheart.00784.2009. Epub 2009 Nov 6.
3
Physiological roles of endogenous ouabain in normal rats.
Am J Physiol Heart Circ Physiol. 2009 Dec;297(6):H2026-34. doi: 10.1152/ajpheart.00734.2009. Epub 2009 Oct 16.
4
Low-dose ouabain constricts small arteries from ouabain-hypertensive rats: implications for sustained elevation of vascular resistance.
Am J Physiol Heart Circ Physiol. 2009 Sep;297(3):H1140-50. doi: 10.1152/ajpheart.00436.2009. Epub 2009 Jul 17.
6
Animal model of mania induced by ouabain: Evidence of oxidative stress in submitochondrial particles of the rat brain.
Neurochem Int. 2009 Dec;55(7):491-5. doi: 10.1016/j.neuint.2009.05.003. Epub 2009 May 15.
7
8
Cellular mediators of renal vascular dysfunction in hypertension.
Am J Physiol Regul Integr Comp Physiol. 2009 Apr;296(4):R1001-18. doi: 10.1152/ajpregu.90960.2008. Epub 2009 Feb 18.
9
From the Cover: Whole-genome association study identifies STK39 as a hypertension susceptibility gene.
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):226-31. doi: 10.1073/pnas.0808358106. Epub 2008 Dec 29.
10
The pump, the exchanger, and endogenous ouabain: signaling mechanisms that link salt retention to hypertension.
Hypertension. 2009 Feb;53(2):291-8. doi: 10.1161/HYPERTENSIONAHA.108.119974. Epub 2008 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验