Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Am J Physiol Heart Circ Physiol. 2012 Oct 1;303(7):H784-94. doi: 10.1152/ajpheart.00399.2012. Epub 2012 Jul 27.
The mechanisms by which NaCl raises blood pressure (BP) in hypertension are unresolved, but much evidence indicates that endogenous ouabain is involved. In rodents, arterial smooth muscle cell (ASMC) Na(+) pumps with an α(2)-catalytic subunit (ouabain EC(50) ≤1.0 nM) are crucial for some hypertension models, even though ≈80% of ASMC Na(+) pumps have an α(1)-subunit (ouabain EC(50) ≈ 5 μM). Human α(1)-Na(+) pumps, however, have high ouabain affinity (EC(50) ≈ 10-20 nM). We used immunoblotting, immunocytochemistry, and Ca(2+) imaging (fura-2) to examine the expression, distribution, and function of Na(+) pump α-subunit isoforms in human arteries and primary cultured human ASMCs (hASMCs). hASMCs express α(1)- and α(2)-Na(+) pumps. Further, α(2)-, but not α(1)-, pumps are confined to plasma membrane microdomains adjacent to sarcoplasmic reticulum (SR), where they colocalize with Na/Ca exchanger-1 (NCX1) and C-type transient receptor potential-6 (receptor-operated channels, ROCs). Prolonged inhibition (72 h) with 100 nM ouabain (blocks nearly all α(1)- and α(2)-pumps) was toxic to most cultured hASMCs. Treatment with 10 nM ouabain (72 h), however, increased NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase expression and augmented ATP (10 μM)-induced SR Ca(2+) release in 0 Ca(2+), ouabain-free media, and Ca(2+) influx after external Ca(2+) restoration. The latter was likely mediated primarily by ROCs and store-operated Ca(2+) channels. These hASMC protein expression and Ca(2+) signaling changes are comparable with previous observations on myocytes isolated from arteries of many rat hypertension models. We conclude that the same structurally and functionally coupled mechanisms (α(2)-Na(+) pumps, NCX1, ROCs, and the SR) regulate Ca(2+) homeostasis and signaling in hASMCs and rodent ASMCs. These ouabain/endogenous ouabain-modulated mechanisms underlie the whole body autoregulation associated with increased vascular resistance and elevation of BP in human, salt-sensitive hypertension.
盐(NaCl)升高高血压患者血压的机制尚未明确,但大量证据表明内源性哇巴因(ouabain)参与其中。在啮齿动物中,动脉平滑肌细胞(ASMC)Na(+)泵的α(2)-催化亚基(ouabain EC(50)≤1.0 nM)对某些高血压模型至关重要,尽管约 80%的 ASMC Na(+)泵具有α(1)-亚基(ouabain EC(50)≈5 μM)。然而,人类的α(1)-Na(+)泵对哇巴因具有高亲和力(EC(50)≈10-20 nM)。我们使用免疫印迹、免疫细胞化学和 Ca(2+)成像(fura-2)来研究人动脉和原代培养的人动脉平滑肌细胞(hASMCs)中 Na(+)泵α-亚基同工型的表达、分布和功能。hASMCs 表达α(1)-和α(2)-Na(+)泵。此外,只有α(2)-泵,而不是α(1)-泵,被局限于与肌浆网(SR)相邻的质膜微域,在那里它们与 Na/Ca 交换器-1(NCX1)和 C 型瞬时受体电位-6(受体操作通道,ROC)共定位。用 100 nM 哇巴因(几乎阻断所有的α(1)-和α(2)-泵)长时间抑制(72 h)对大多数培养的 hASMC 是有毒的。然而,用 10 nM 哇巴因(72 h)处理会增加 NCX1 和肌浆(内)网 Ca(2+)-ATP 酶的表达,并增强 0 Ca(2+)、无哇巴因介质中 ATP(10 μM)诱导的 SR Ca(2+)释放,以及外部 Ca(2+)恢复后的 Ca(2+)内流。后者可能主要由 ROC 和储存操作 Ca(2+)通道介导。这些 hASMC 蛋白表达和 Ca(2+)信号变化与先前在许多大鼠高血压模型的动脉分离的心肌细胞中观察到的相似。我们得出结论,相同的结构和功能偶联机制(α(2)-Na(+)泵、NCX1、ROC 和 SR)调节 hASMC 和啮齿动物 ASMC 中的 Ca(2+)稳态和信号转导。这些哇巴因/内源性哇巴因调节的机制是与人类、盐敏感性高血压中血管阻力增加和血压升高相关的全身自动调节的基础。