Lund-Katz Sissel, Phillips Michael C
Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.
Subcell Biochem. 2010;51:183-227. doi: 10.1007/978-90-481-8622-8_7.
High density lipoprotein (HDL) possesses important anti-atherogenic properties and this review addresses the molecular mechanisms underlying these functions. The structures and cholesterol transport abilities of HDL particles are determined by the properties of their exchangeable apolipoprotein (apo) components. ApoA-I and apoE, which are the best characterized in structural terms, contain a series of amphipathic alpha-helical repeats. The helices located in the amino-terminal two-thirds of the molecule adopt a helix bundle structure while the carboxy-terminal segment forms a separately folded, relatively disorganized, domain. The latter domain initiates lipid binding and this interaction induces changes in conformation; the alpha-helix content increases and the amino-terminal helix bundle can open subsequently. These conformational changes alter the abilities of apoA-I and apoE to function as ligands for their receptors. The apoA-I and apoE molecules possess detergent-like properties and they can solubilize vesicular phospholipid to create discoidal HDL particles with hydrodynamic diameters of ~10 nm. In the case of apoA-I, such a particle is stabilized by two protein molecules arranged in an anti-parallel, double-belt, conformation around the edge of the disc. The abilities of apoA-I and apoE to solubilize phospholipid and stabilize HDL particles enable these proteins to be partners with ABCA1 in mediating efflux of cellular phospholipid and cholesterol, and the biogenesis of HDL particles. ApoA-I-containing nascent HDL particles play a critical role in cholesterol transport in the circulation whereas apoE-containing HDL particles mediate cholesterol transport in the brain. The mechanisms by which HDL particles are remodeled by lipases and lipid transfer proteins, and interact with SR-BI to deliver cholesterol to cells, are reviewed.
高密度脂蛋白(HDL)具有重要的抗动脉粥样硬化特性,本综述探讨了这些功能背后的分子机制。HDL颗粒的结构和胆固醇转运能力由其可交换载脂蛋白(apo)成分的特性决定。在结构方面研究得最为透彻的apoA-I和apoE含有一系列两亲性α-螺旋重复序列。位于分子氨基末端三分之二的螺旋形成螺旋束结构,而羧基末端片段形成一个单独折叠、相对无序的结构域。后一个结构域启动脂质结合,这种相互作用诱导构象变化;α-螺旋含量增加,随后氨基末端螺旋束可以打开。这些构象变化改变了apoA-I和apoE作为其受体配体的功能能力。apoA-I和apoE分子具有类似去污剂的性质,它们可以溶解囊泡磷脂以形成流体动力学直径约为10 nm的盘状HDL颗粒。就apoA-I而言,这样的颗粒通过两个以反平行双带构象排列在盘边缘的蛋白质分子得以稳定。apoA-I和apoE溶解磷脂和稳定HDL颗粒的能力使这些蛋白质能够与ABCA1合作,介导细胞磷脂和胆固醇的流出以及HDL颗粒的生物合成。含apoA-I的新生HDL颗粒在循环中的胆固醇转运中起关键作用,而含apoE的HDL颗粒介导大脑中的胆固醇转运。本文综述了HDL颗粒被脂肪酶和脂质转运蛋白重塑以及与SR-BI相互作用以将胆固醇输送到细胞的机制。