Suppr超能文献

高密度脂蛋白的结构功能及其在胆固醇逆向转运中的作用。

High density lipoprotein structure-function and role in reverse cholesterol transport.

作者信息

Lund-Katz Sissel, Phillips Michael C

机构信息

Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4318, USA.

出版信息

Subcell Biochem. 2010;51:183-227. doi: 10.1007/978-90-481-8622-8_7.

Abstract

High density lipoprotein (HDL) possesses important anti-atherogenic properties and this review addresses the molecular mechanisms underlying these functions. The structures and cholesterol transport abilities of HDL particles are determined by the properties of their exchangeable apolipoprotein (apo) components. ApoA-I and apoE, which are the best characterized in structural terms, contain a series of amphipathic alpha-helical repeats. The helices located in the amino-terminal two-thirds of the molecule adopt a helix bundle structure while the carboxy-terminal segment forms a separately folded, relatively disorganized, domain. The latter domain initiates lipid binding and this interaction induces changes in conformation; the alpha-helix content increases and the amino-terminal helix bundle can open subsequently. These conformational changes alter the abilities of apoA-I and apoE to function as ligands for their receptors. The apoA-I and apoE molecules possess detergent-like properties and they can solubilize vesicular phospholipid to create discoidal HDL particles with hydrodynamic diameters of ~10 nm. In the case of apoA-I, such a particle is stabilized by two protein molecules arranged in an anti-parallel, double-belt, conformation around the edge of the disc. The abilities of apoA-I and apoE to solubilize phospholipid and stabilize HDL particles enable these proteins to be partners with ABCA1 in mediating efflux of cellular phospholipid and cholesterol, and the biogenesis of HDL particles. ApoA-I-containing nascent HDL particles play a critical role in cholesterol transport in the circulation whereas apoE-containing HDL particles mediate cholesterol transport in the brain. The mechanisms by which HDL particles are remodeled by lipases and lipid transfer proteins, and interact with SR-BI to deliver cholesterol to cells, are reviewed.

摘要

高密度脂蛋白(HDL)具有重要的抗动脉粥样硬化特性,本综述探讨了这些功能背后的分子机制。HDL颗粒的结构和胆固醇转运能力由其可交换载脂蛋白(apo)成分的特性决定。在结构方面研究得最为透彻的apoA-I和apoE含有一系列两亲性α-螺旋重复序列。位于分子氨基末端三分之二的螺旋形成螺旋束结构,而羧基末端片段形成一个单独折叠、相对无序的结构域。后一个结构域启动脂质结合,这种相互作用诱导构象变化;α-螺旋含量增加,随后氨基末端螺旋束可以打开。这些构象变化改变了apoA-I和apoE作为其受体配体的功能能力。apoA-I和apoE分子具有类似去污剂的性质,它们可以溶解囊泡磷脂以形成流体动力学直径约为10 nm的盘状HDL颗粒。就apoA-I而言,这样的颗粒通过两个以反平行双带构象排列在盘边缘的蛋白质分子得以稳定。apoA-I和apoE溶解磷脂和稳定HDL颗粒的能力使这些蛋白质能够与ABCA1合作,介导细胞磷脂和胆固醇的流出以及HDL颗粒的生物合成。含apoA-I的新生HDL颗粒在循环中的胆固醇转运中起关键作用,而含apoE的HDL颗粒介导大脑中的胆固醇转运。本文综述了HDL颗粒被脂肪酶和脂质转运蛋白重塑以及与SR-BI相互作用以将胆固醇输送到细胞的机制。

相似文献

1
High density lipoprotein structure-function and role in reverse cholesterol transport.
Subcell Biochem. 2010;51:183-227. doi: 10.1007/978-90-481-8622-8_7.
3
Influence of apolipoprotein (Apo) A-I structure on nascent high density lipoprotein (HDL) particle size distribution.
J Biol Chem. 2010 Oct 15;285(42):31965-73. doi: 10.1074/jbc.M110.126292. Epub 2010 Aug 2.
4
Influence of C-terminal α-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality.
Biochim Biophys Acta. 2012 Mar;1821(3):456-63. doi: 10.1016/j.bbalip.2011.07.020. Epub 2011 Aug 5.
6
The roles of C-terminal helices of human apolipoprotein A-I in formation of high-density lipoprotein particles.
Biochim Biophys Acta. 2014 Jan;1841(1):80-7. doi: 10.1016/j.bbalip.2013.10.005. Epub 2013 Oct 9.
7
Apolipoprotein A-I-stimulated apolipoprotein E secretion from human macrophages is independent of cholesterol efflux.
J Biol Chem. 2004 Jun 18;279(25):25966-77. doi: 10.1074/jbc.M401177200. Epub 2004 Apr 1.
10
Characterization of nascent HDL particles and microparticles formed by ABCA1-mediated efflux of cellular lipids to apoA-I.
J Lipid Res. 2006 Apr;47(4):832-43. doi: 10.1194/jlr.M500531-JLR200. Epub 2006 Jan 17.

引用本文的文献

1
Apolipoprotein A (ApoA) in Neurological Disorders: Connections and Insights.
Int J Mol Sci. 2025 Aug 16;26(16):7908. doi: 10.3390/ijms26167908.
4
Association of cerebrospinal fluid NPY with peripheral ApoA: a moderation effect of BMI.
Nutr Metab (Lond). 2024 Jul 25;21(1):52. doi: 10.1186/s12986-024-00828-6.
6
Cross-kingdom regulation by plant-derived miRNAs in mammalian systems.
Animal Model Exp Med. 2023 Dec;6(6):518-525. doi: 10.1002/ame2.12358. Epub 2023 Dec 8.
8
Lipoprotein Particles as Shuttles for Hydrophilic Cargo.
Membranes (Basel). 2023 Apr 28;13(5):471. doi: 10.3390/membranes13050471.
9
Paraoxonase 1 and atherosclerosis.
Front Cardiovasc Med. 2023 Feb 16;10:1065967. doi: 10.3389/fcvm.2023.1065967. eCollection 2023.
10
Extracellular Non-Coding RNAs in Cardiovascular Diseases.
Pharmaceutics. 2023 Jan 3;15(1):155. doi: 10.3390/pharmaceutics15010155.

本文引用的文献

2
Molecular mechanism of apolipoprotein E binding to lipoprotein particles.
Biochemistry. 2009 Apr 7;48(13):3025-32. doi: 10.1021/bi9000694.
3
Insight on the molecular envelope of lipid-bound apolipoprotein E from electron paramagnetic resonance spectroscopy.
J Mol Biol. 2009 Feb 13;386(1):261-71. doi: 10.1016/j.jmb.2008.12.040. Epub 2008 Dec 24.
4
Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer's disease to AIDS.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S183-8. doi: 10.1194/jlr.R800069-JLR200. Epub 2008 Dec 22.
5
The metabolism and anti-atherogenic properties of HDL.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S195-200. doi: 10.1194/jlr.R800034-JLR200. Epub 2008 Nov 24.
6
The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S201-6. doi: 10.1194/jlr.R800061-JLR200. Epub 2008 Nov 20.
7
Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall.
J Lipid Res. 2009 Apr;50 Suppl(Suppl):S156-61. doi: 10.1194/jlr.R800058-JLR200. Epub 2008 Nov 18.
8
HDL remodeling during the acute phase response.
Arterioscler Thromb Vasc Biol. 2009 Feb;29(2):261-7. doi: 10.1161/ATVBAHA.108.178681. Epub 2008 Nov 13.
9
Conformational flexibility of the N-terminal domain of apolipoprotein a-I bound to spherical lipid particles.
Biochemistry. 2008 Oct 28;47(43):11340-7. doi: 10.1021/bi801503r. Epub 2008 Oct 2.
10
Regulation of cholesterol efflux from macrophages.
Curr Opin Lipidol. 2008 Oct;19(5):455-61. doi: 10.1097/MOL.0b013e32830f4a1d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验