滤波器的稀疏贝叶斯学习用于高效图像扩展。
Sparse bayesian learning of filters for efficient image expansion.
机构信息
Graduate School of Informatics, Kyoto University, Kyoto 611-0011, Japan.
出版信息
IEEE Trans Image Process. 2010 Jun;19(6):1480-90. doi: 10.1109/TIP.2010.2043010. Epub 2010 Mar 8.
We propose a framework for expanding a given image using an interpolator that is trained in advance with training data, based on sparse bayesian estimation for determining the optimal and compact support for efficient image expansion. Experiments on test data show that learned interpolators are compact yet superior to classical ones.
我们提出了一种使用预先训练的插值器扩展给定图像的框架,该插值器基于稀疏贝叶斯估计来确定最优和紧凑的支持,以实现高效的图像扩展。在测试数据上的实验表明,学习到的插值器紧凑但优于经典的插值器。