EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), UPF, Barcelona and Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain.
Nucleic Acids Res. 2010 May;38(8):2645-62. doi: 10.1093/nar/gkq152. Epub 2010 Mar 9.
Here, we propose a framework for the design of synthetic protein networks from modular protein-protein or protein-peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part-based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general-purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them.
在这里,我们提出了一个从模块化的蛋白质-蛋白质或蛋白质-肽相互作用设计合成蛋白质网络的框架,并提供了一个蛋白质构建模块的起始工具包。我们的概念验证实验概述了基于部分的蛋白质系统工程的一般工作流程。我们简化了迭代的 BioBrick 克隆方案,并从七个标准化的 DNA 片段中分别组装了 25 个合成的多结构域蛋白质。系统筛选揭示了控制大肠杆菌中蛋白质表达的两个主要因素:mRNA 二级结构对翻译起始的阻碍或单个结构域的毒性。最终,有 13 个蛋白质被纯化用于进一步表征。从成熟的生物技术工具开始,构建并在体外表征了两个通用的交互输入和两个读出设备。一对合成的亮氨酸拉链实现了组成型相互作用输入。第二个相互作用是利用雷帕霉素诱导的 FRB(T2098L)与 FKBP12 的结合来进行药物控制。通过表面等离子体共振分析了这两个设备的相互作用动力学。读出基于荧光蛋白之间的Förster 共振能量转移,并对输入和输出设备的各种组合进行了定量分析。我们的结果证明了基于部分的蛋白质合成生物学的可行性。此外,我们确定了模块化设计的未来挑战和局限性,以及解决这些问题的方法。