Computational Science, Department of Chemistry and Applied Biosciences, Eidgenössiche Technische Hochschule Zürich, Università della Svizzera Italiana Campus, Via Giuseppe Buffi 13, CH-6900 Lugano, Switzerland.
Proc Natl Acad Sci U S A. 2010 Mar 23;107(12):5411-6. doi: 10.1073/pnas.0913377107. Epub 2010 Mar 9.
The widely used nonsteroidal anti-inflammatory drugs block the cyclooxygenase enzymes (COXs) and are clinically used for the treatment of inflammation, pain, and cancers. A selective inhibition of the different isoforms, particularly COX-2, is desirable, and consequently a deeper understanding of the molecular basis of selective inhibition is of great demand. Using an advanced computational technique we have simulated the full dissociation process of a highly potent and selective inhibitor, SC-558, in both COX-1 and COX-2. We have found a previously unreported alternative binding mode in COX-2 explaining the time-dependent inhibition exhibited by this class of inhibitors and consequently their long residence time inside this isoform. Our metadynamics-based approach allows us to illuminate the highly dynamical character of the ligand/protein recognition process, thus explaining a wealth of experimental data and paving the way to an innovative strategy for designing new COX inhibitors with tuned selectivity.
广泛使用的非甾体抗炎药抑制环氧化酶(COXs),临床上用于治疗炎症、疼痛和癌症。选择性抑制不同的同工酶,特别是 COX-2,是理想的,因此,对选择性抑制的分子基础有更深入的了解是非常需要的。我们使用先进的计算技术模拟了一种高效且选择性抑制剂 SC-558 在 COX-1 和 COX-2 中的完全解离过程。我们在 COX-2 中发现了一种以前未报道的替代结合模式,解释了这类抑制剂表现出的时间依赖性抑制作用,因此它们在这种同工酶中的停留时间较长。我们基于元动力学的方法使我们能够阐明配体/蛋白质识别过程的高度动态特性,从而解释了大量的实验数据,并为设计具有可调选择性的新型 COX 抑制剂开辟了一条创新策略。