Suppr超能文献

人工合成原细胞以模拟和测试细胞功能。

Synthetic protocells to mimic and test cell function.

出版信息

Adv Mater. 2010 Jan 5;22(1):120-7. doi: 10.1002/adma.200901945.

Abstract

Synthetic protocells provide a new means to probe, mimic and deconstruct cell behavior; they are a powerful tool to quantify cell behavior and a useful platform to explore nanomedicine. Protocells are not simple particles; they mimic cell design and typically consist of a stabilized lipid bilayer with membrane proteins. With a finite number of well characterized components, protocells can be designed to maximize useful outputs. Energy conversion in cells is an intriguing output; many natural cells convert transmembrane ion gradients into electricity by membrane-protein regulated ion transport. Here, a synthetic cell system comprising two droplets separated by a lipid bilayer is described that functions as a biological battery. The factors that affect its electrogenic performance are explained and predicted by coupling equations of the electrodes, transport proteins and membrane behavior. We show that the output of such biological batteries can reach an energy density of 6.9 x 10(6) J m(-3), which is approximately 5% of the volumetric energy density of a lead-acid battery. The configuration with maximum power density has an energy conversion efficiency of 10%.

摘要

人工合成原细胞为研究、模拟和分解细胞行为提供了新手段;它们是量化细胞行为的有力工具,也是探索纳米医学的有用平台。原细胞不是简单的颗粒;它们模拟细胞设计,通常由稳定的脂质双层和膜蛋白组成。通过使用有限数量的特征明确的组件,可以设计原细胞以最大化有用的输出。细胞中的能量转换是一个有趣的输出;许多天然细胞通过膜蛋白调节的离子转运将跨膜离子梯度转化为电能。在这里,描述了一种由脂质双层分隔的两个液滴组成的合成细胞系统,该系统可作为生物电池运行。通过耦合电极、转运蛋白和膜行为的方程来解释和预测影响其发电性能的因素。我们表明,这种生物电池的输出可以达到 6.9×10^6 J m^(-3) 的能量密度,这大约是铅酸电池体积能量密度的 5%。最大功率密度的配置具有 10%的能量转换效率。

相似文献

1
Synthetic protocells to mimic and test cell function.
Adv Mater. 2010 Jan 5;22(1):120-7. doi: 10.1002/adma.200901945.
2
A synthetic ion channel with anisotropic ligand response.
Nat Commun. 2020 Jun 10;11(1):2924. doi: 10.1038/s41467-020-16770-z.
3
Ion transport through lipid bilayers by synthetic ionophores: modulation of activity and selectivity.
Acc Chem Res. 2013 Dec 17;46(12):2781-90. doi: 10.1021/ar4000136. Epub 2013 Mar 27.
4
Ion and lipid orchestration of secondary active transport.
Nature. 2024 Feb;626(8001):963-974. doi: 10.1038/s41586-024-07062-3. Epub 2024 Feb 28.
5
Do sterols reduce proton and sodium leaks through lipid bilayers?
Prog Lipid Res. 2001 Jul;40(4):299-324. doi: 10.1016/s0163-7827(01)00009-1.
6
Lipid bilayer composition influences small multidrug transporters.
BMC Biochem. 2008 Nov 25;9:31. doi: 10.1186/1471-2091-9-31.
7
Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
Acc Chem Res. 2013 Dec 17;46(12):2834-46. doi: 10.1021/ar400024p. Epub 2013 May 28.
8
DNA nanostructures interacting with lipid bilayer membranes.
Acc Chem Res. 2014 Jun 17;47(6):1807-15. doi: 10.1021/ar500051r. Epub 2014 May 14.
9
Designing artificial cells to harness the biological ion concentration gradient.
Nat Nanotechnol. 2008 Nov;3(11):666-70. doi: 10.1038/nnano.2008.274. Epub 2008 Sep 21.
10
Quantifying proton-induced membrane polarization in single biomimetic giant vesicles.
Biophys J. 2022 Jun 21;121(12):2223-2232. doi: 10.1016/j.bpj.2022.05.041. Epub 2022 May 28.

引用本文的文献

2
A microscale soft ionic power source modulates neuronal network activity.
Nature. 2023 Aug;620(7976):1001-1006. doi: 10.1038/s41586-023-06295-y. Epub 2023 Aug 30.
3
Enhancing membrane-based soft materials with magnetic reconfiguration events.
Sci Rep. 2022 Feb 1;12(1):1703. doi: 10.1038/s41598-022-05501-7.
4
Chemically Triggered Coalescence and Reactivity of Droplet Fibers.
J Am Chem Soc. 2021 Apr 14;143(14):5558-5564. doi: 10.1021/jacs.1c02576. Epub 2021 Apr 1.
6
Reconfiguring droplet interface bilayer networks through sacrificial membranes.
Biomicrofluidics. 2018 Jun 12;12(3):034112. doi: 10.1063/1.5023386. eCollection 2018 May.
7
An electric-eel-inspired soft power source from stacked hydrogels.
Nature. 2017 Dec 13;552(7684):214-218. doi: 10.1038/nature24670.
8
Hierarchical Self-Assembly of a Copolymer-Stabilized Coacervate Protocell.
J Am Chem Soc. 2017 Dec 6;139(48):17309-17312. doi: 10.1021/jacs.7b10846. Epub 2017 Nov 17.
9
Multiscale modeling of droplet interface bilayer membrane networks.
Biomicrofluidics. 2015 Nov 9;9(6):064101. doi: 10.1063/1.4935382. eCollection 2015 Nov.
10
Contact bubble bilayers with flush drainage.
Sci Rep. 2015 Mar 16;5:9110. doi: 10.1038/srep09110.

本文引用的文献

1
POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES.
J Gen Physiol. 1943 Sep 20;27(1):37-60. doi: 10.1085/jgp.27.1.37.
2
Torque generation and elastic power transmission in the rotary F(O)F(1)-ATPase.
Nature. 2009 May 21;459(7245):364-70. doi: 10.1038/nature08145.
3
Droplet interface bilayers.
Mol Biosyst. 2008 Dec;4(12):1191-208. doi: 10.1039/b808893d. Epub 2008 Sep 5.
4
Porous nanoparticle supported lipid bilayers (protocells) as delivery vehicles.
J Am Chem Soc. 2009 Feb 4;131(4):1354-5. doi: 10.1021/ja808018y.
5
Power generation with laterally packaged piezoelectric fine wires.
Nat Nanotechnol. 2009 Jan;4(1):34-9. doi: 10.1038/nnano.2008.314. Epub 2008 Nov 9.
6
Designing artificial cells to harness the biological ion concentration gradient.
Nat Nanotechnol. 2008 Nov;3(11):666-70. doi: 10.1038/nnano.2008.274. Epub 2008 Sep 21.
7
Piezoelectric quartz crystal biosensors.
Talanta. 1998 Aug;46(6):1223-36. doi: 10.1016/s0039-9140(97)00392-5.
8
Cooling, heating, generating power, and recovering waste heat with thermoelectric systems.
Science. 2008 Sep 12;321(5895):1457-61. doi: 10.1126/science.1158899.
9
Electrical behavior of droplet interface bilayer networks: experimental analysis and modeling.
J Am Chem Soc. 2007 Sep 26;129(38):11854-64. doi: 10.1021/ja074071a. Epub 2007 Sep 1.
10
Thermoelectric energy conversion with solid electrolytes.
Science. 1983 Sep 2;221(4614):915-20. doi: 10.1126/science.221.4614.915.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验