Adv Mater. 2010 Jan 5;22(1):120-7. doi: 10.1002/adma.200901945.
Synthetic protocells provide a new means to probe, mimic and deconstruct cell behavior; they are a powerful tool to quantify cell behavior and a useful platform to explore nanomedicine. Protocells are not simple particles; they mimic cell design and typically consist of a stabilized lipid bilayer with membrane proteins. With a finite number of well characterized components, protocells can be designed to maximize useful outputs. Energy conversion in cells is an intriguing output; many natural cells convert transmembrane ion gradients into electricity by membrane-protein regulated ion transport. Here, a synthetic cell system comprising two droplets separated by a lipid bilayer is described that functions as a biological battery. The factors that affect its electrogenic performance are explained and predicted by coupling equations of the electrodes, transport proteins and membrane behavior. We show that the output of such biological batteries can reach an energy density of 6.9 x 10(6) J m(-3), which is approximately 5% of the volumetric energy density of a lead-acid battery. The configuration with maximum power density has an energy conversion efficiency of 10%.
人工合成原细胞为研究、模拟和分解细胞行为提供了新手段;它们是量化细胞行为的有力工具,也是探索纳米医学的有用平台。原细胞不是简单的颗粒;它们模拟细胞设计,通常由稳定的脂质双层和膜蛋白组成。通过使用有限数量的特征明确的组件,可以设计原细胞以最大化有用的输出。细胞中的能量转换是一个有趣的输出;许多天然细胞通过膜蛋白调节的离子转运将跨膜离子梯度转化为电能。在这里,描述了一种由脂质双层分隔的两个液滴组成的合成细胞系统,该系统可作为生物电池运行。通过耦合电极、转运蛋白和膜行为的方程来解释和预测影响其发电性能的因素。我们表明,这种生物电池的输出可以达到 6.9×10^6 J m^(-3) 的能量密度,这大约是铅酸电池体积能量密度的 5%。最大功率密度的配置具有 10%的能量转换效率。