Structural Biology Program, Centenary Institute, Sydney, New South Wales 2042, Australia.
J Biol Chem. 2010 May 7;285(19):14594-602. doi: 10.1074/jbc.M110.111914. Epub 2010 Mar 10.
FeoB is a prokaryotic membrane protein responsible for the import of ferrous iron (Fe(2+)). A defining feature of FeoB is that it includes an N-terminal 30-kDa soluble domain with GTPase activity, which is required for iron transport. However, the low intrinsic GTP hydrolysis rate of this domain appears to be too slow for FeoB either to function as a channel or to possess an active Fe(2+) membrane transport mechanism. Here, we present crystal structures of the soluble domain of FeoB from Streptococcus thermophilus in complex with GDP and with the GTP analogue derivative 2'-(or -3')-O-(N-methylanthraniloyl)-beta,gamma-imidoguanosine 5'-triphosphate (mant-GMPPNP). Unlike recent structures of the G protein domain, the mant-GMPPNP-bound structure shows clearly resolved, active conformations of the critical Switch motifs. Importantly, biochemical analyses demonstrate that the GTPase activity of FeoB is activated by K(+), which leads to a 20-fold acceleration in its hydrolysis rate. Analysis of the structure identified a conserved asparagine residue likely to be involved in K(+) coordination, and mutation of this residue abolished K(+)-dependent activation. We suggest that this, together with a second asparagine residue that we show is critical for the structure of the Switch I loop, allows the prediction of K(+)-dependent activation in G proteins. In addition, the accelerated hydrolysis rate opens up the possibility that FeoB might indeed function as an active transporter.
FeoB 是一种负责亚铁(Fe(2+))输入的原核膜蛋白。FeoB 的一个显著特征是它包含一个具有 GTPase 活性的 N 端 30kDa 可溶性结构域,这对于铁的运输是必需的。然而,该结构域的固有 GTP 水解率很低,对于 FeoB 来说,无论是作为通道还是具有主动的 Fe(2+)膜转运机制,其速度似乎都太慢了。在这里,我们展示了嗜热链球菌 FeoB 可溶性结构域与 GDP 以及 GTP 类似物衍生物 2'-(或 -3')-O-(N-甲基邻氨基苯甲酰基)-β,γ-亚氨基鸟苷 5'-三磷酸(mant-GMPPNP)复合物的晶体结构。与最近的 G 蛋白结构域结构不同,mant-GMPPNP 结合结构显示出明确分辨的、关键 Switch 模体的活性构象。重要的是,生化分析表明,FeoB 的 GTPase 活性被 K(+)激活,这导致其水解速率提高了 20 倍。结构分析确定了一个保守的天冬酰胺残基可能参与 K(+)的配位,突变该残基会使 K(+)依赖性激活丧失。我们认为,这与我们表明对 Switch I 环结构至关重要的第二个天冬酰胺残基一起,允许预测 G 蛋白中 K(+)依赖性激活。此外,加速的水解速率使 FeoB 作为一种主动转运体的可能性成为可能。