Suppr超能文献

G 蛋白偶联亚铁转运蛋白 B 中的钾激活 GTP 酶反应。

Potassium-activated GTPase reaction in the G Protein-coupled ferrous iron transporter B.

机构信息

Structural Biology Program, Centenary Institute, Sydney, New South Wales 2042, Australia.

出版信息

J Biol Chem. 2010 May 7;285(19):14594-602. doi: 10.1074/jbc.M110.111914. Epub 2010 Mar 10.

Abstract

FeoB is a prokaryotic membrane protein responsible for the import of ferrous iron (Fe(2+)). A defining feature of FeoB is that it includes an N-terminal 30-kDa soluble domain with GTPase activity, which is required for iron transport. However, the low intrinsic GTP hydrolysis rate of this domain appears to be too slow for FeoB either to function as a channel or to possess an active Fe(2+) membrane transport mechanism. Here, we present crystal structures of the soluble domain of FeoB from Streptococcus thermophilus in complex with GDP and with the GTP analogue derivative 2'-(or -3')-O-(N-methylanthraniloyl)-beta,gamma-imidoguanosine 5'-triphosphate (mant-GMPPNP). Unlike recent structures of the G protein domain, the mant-GMPPNP-bound structure shows clearly resolved, active conformations of the critical Switch motifs. Importantly, biochemical analyses demonstrate that the GTPase activity of FeoB is activated by K(+), which leads to a 20-fold acceleration in its hydrolysis rate. Analysis of the structure identified a conserved asparagine residue likely to be involved in K(+) coordination, and mutation of this residue abolished K(+)-dependent activation. We suggest that this, together with a second asparagine residue that we show is critical for the structure of the Switch I loop, allows the prediction of K(+)-dependent activation in G proteins. In addition, the accelerated hydrolysis rate opens up the possibility that FeoB might indeed function as an active transporter.

摘要

FeoB 是一种负责亚铁(Fe(2+))输入的原核膜蛋白。FeoB 的一个显著特征是它包含一个具有 GTPase 活性的 N 端 30kDa 可溶性结构域,这对于铁的运输是必需的。然而,该结构域的固有 GTP 水解率很低,对于 FeoB 来说,无论是作为通道还是具有主动的 Fe(2+)膜转运机制,其速度似乎都太慢了。在这里,我们展示了嗜热链球菌 FeoB 可溶性结构域与 GDP 以及 GTP 类似物衍生物 2'-(或 -3')-O-(N-甲基邻氨基苯甲酰基)-β,γ-亚氨基鸟苷 5'-三磷酸(mant-GMPPNP)复合物的晶体结构。与最近的 G 蛋白结构域结构不同,mant-GMPPNP 结合结构显示出明确分辨的、关键 Switch 模体的活性构象。重要的是,生化分析表明,FeoB 的 GTPase 活性被 K(+)激活,这导致其水解速率提高了 20 倍。结构分析确定了一个保守的天冬酰胺残基可能参与 K(+)的配位,突变该残基会使 K(+)依赖性激活丧失。我们认为,这与我们表明对 Switch I 环结构至关重要的第二个天冬酰胺残基一起,允许预测 G 蛋白中 K(+)依赖性激活。此外,加速的水解速率使 FeoB 作为一种主动转运体的可能性成为可能。

相似文献

1
Potassium-activated GTPase reaction in the G Protein-coupled ferrous iron transporter B.
J Biol Chem. 2010 May 7;285(19):14594-602. doi: 10.1074/jbc.M110.111914. Epub 2010 Mar 10.
2
The initiation of GTP hydrolysis by the G-domain of FeoB: insights from a transition-state complex structure.
PLoS One. 2011;6(8):e23355. doi: 10.1371/journal.pone.0023355. Epub 2011 Aug 9.
3
The structure of an N11A mutant of the G-protein domain of FeoB.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2011 Dec 1;67(Pt 12):1511-5. doi: 10.1107/S1744309111042965. Epub 2011 Nov 29.
4
A suite of Switch I and Switch II mutant structures from the G-protein domain of FeoB.
Acta Crystallogr D Biol Crystallogr. 2011 Nov;67(Pt 11):973-80. doi: 10.1107/S0907444911039461. Epub 2011 Oct 19.
5
Is the bacterial ferrous iron transporter FeoB a living fossil?
Trends Microbiol. 2003 May;11(5):192-5. doi: 10.1016/s0966-842x(03)00100-8.
6
A fusion of the Bacteroides fragilis ferrous iron import proteins reveals a role for FeoA in stabilizing GTP-bound FeoB.
J Biol Chem. 2022 Apr;298(4):101808. doi: 10.1016/j.jbc.2022.101808. Epub 2022 Mar 8.
7
Structural and functional analysis of a FeoB A143S G5 loop mutant explains the accelerated GDP release rate.
FEBS J. 2014 May;281(9):2254-65. doi: 10.1111/febs.12779. Epub 2014 Apr 1.
8
The membrane protein FeoB contains an intramolecular G protein essential for Fe(II) uptake in bacteria.
Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):16243-8. doi: 10.1073/pnas.242338299. Epub 2002 Nov 22.
9
Structural basis of GDP release and gating in G protein coupled Fe2+ transport.
EMBO J. 2009 Sep 2;28(17):2677-85. doi: 10.1038/emboj.2009.208. Epub 2009 Jul 23.

引用本文的文献

1
Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers.
Biochim Biophys Acta Biomembr. 2025 Feb;1867(2):184404. doi: 10.1016/j.bbamem.2024.184404. Epub 2024 Dec 16.
3
A general protocol for the expression and purification of the intact transmembrane transporter FeoB.
Biochim Biophys Acta Biomembr. 2022 Sep 1;1864(9):183973. doi: 10.1016/j.bbamem.2022.183973. Epub 2022 May 27.
4
Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport.
Biochemistry. 2021 Nov 9;60(44):3277-3291. doi: 10.1021/acs.biochem.1c00586. Epub 2021 Oct 20.
5
Relevance of FeoAB system in Rhodanobacter sp. B2A1Ga4 resistance to heavy metals, aluminium, gallium, and indium.
Appl Microbiol Biotechnol. 2021 Apr;105(8):3301-3314. doi: 10.1007/s00253-021-11254-6. Epub 2021 Apr 1.
6
Bacterial iron detoxification at the molecular level.
J Biol Chem. 2020 Dec 18;295(51):17602-17623. doi: 10.1074/jbc.REV120.007746.
7
FeoB hydrolyzes ATP and GTP in the absence of stimulatory factors.
Metallomics. 2020 Dec 23;12(12):2065-2074. doi: 10.1039/d0mt00195c.
8
Biochemical characterization of bacterial FeoBs: A perspective on nucleotide specificity.
Arch Biochem Biophys. 2020 May 30;685:108350. doi: 10.1016/j.abb.2020.108350. Epub 2020 Mar 24.
10
FeoB contains a dual nucleotide-specific NTPase domain essential for ferrous iron uptake.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4599-4604. doi: 10.1073/pnas.1817964116. Epub 2019 Feb 13.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structure of the GTPase and GDI domains of FeoB, the ferrous iron transporter of Legionella pneumophila.
FEBS Lett. 2010 Feb 19;584(4):733-8. doi: 10.1016/j.febslet.2009.12.045. Epub 2009 Dec 27.
3
Structural basis of novel interactions between the small-GTPase and GDI-like domains in prokaryotic FeoB iron transporter.
Structure. 2009 Oct 14;17(10):1345-55. doi: 10.1016/j.str.2009.08.007. Epub 2009 Sep 3.
4
Structural basis of GDP release and gating in G protein coupled Fe2+ transport.
EMBO J. 2009 Sep 2;28(17):2677-85. doi: 10.1038/emboj.2009.208. Epub 2009 Jul 23.
5
Structure and function of the FeoB G-domain from Methanococcus jannaschii.
J Mol Biol. 2009 Sep 18;392(2):405-19. doi: 10.1016/j.jmb.2009.07.020. Epub 2009 Jul 15.
6
G-domain dimerization orchestrates the tRNA wobble modification reaction in the MnmE/GidA complex.
J Mol Biol. 2009 Oct 2;392(4):910-22. doi: 10.1016/j.jmb.2009.07.004. Epub 2009 Jul 8.
7
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
8
Ras oncogenes: split personalities.
Nat Rev Mol Cell Biol. 2008 Jul;9(7):517-31. doi: 10.1038/nrm2438.
9
Monomeric G-proteins as signal transducers in airway physiology and pathophysiology.
Cell Signal. 2008 Oct;20(10):1705-14. doi: 10.1016/j.cellsig.2008.04.012. Epub 2008 May 1.
10
Characterization of a novel prokaryotic GDP dissociation inhibitor domain from the G protein coupled membrane protein FeoB.
J Mol Biol. 2008 Jan 25;375(4):1086-97. doi: 10.1016/j.jmb.2007.11.027. Epub 2007 Nov 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验