Suppr超能文献

内幕与诀窍:膜蛋白介导的原核亚铁转运的最新进展。

Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport.

机构信息

Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States.

出版信息

Biochemistry. 2021 Nov 9;60(44):3277-3291. doi: 10.1021/acs.biochem.1c00586. Epub 2021 Oct 20.

Abstract

Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.

摘要

铁是几乎所有生物体的必需营养物质,特别是致病原核生物。然而,尽管它很重要,但这种元素的获取和输出都需要专门的途径,这些途径依赖于氧化态。由于其溶解度和动力学不稳定性,还原态二价铁 (Fe) 对细菌的导入、伴侣和外排很有用。一旦被导入,二价铁可能被加载到脱辅基和新生酶中,甚至在某些条件下被隔离到储存蛋白中。然而,过多的不稳定二价铁可能会产生毒性,因为它可能会错误地催化芬顿化学,从而产生活性氧物种并导致细胞损伤。因此,越来越明显的是,细菌已经进化出铁外排泵来应对过量的二价铁条件,并防止细胞内氧化应激。在这项工作中,我们强调了最近在理解原核生物二价铁输入和输出系统方面的结构和机制方面的进展,重点是这些基本运输系统与发病机制的联系。鉴于这些途径与许多抗生素耐药性细菌菌株的毒力有关,对病原体中二价铁循环的机制细节有更深入的了解,可能会为未来的治疗发展开辟新的途径。

相似文献

1
Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport.
Biochemistry. 2021 Nov 9;60(44):3277-3291. doi: 10.1021/acs.biochem.1c00586. Epub 2021 Oct 20.
2
Bacterial ferrous iron transport: the Feo system.
FEMS Microbiol Rev. 2016 Mar;40(2):273-98. doi: 10.1093/femsre/fuv049. Epub 2015 Dec 17.
3
Toward a mechanistic understanding of Feo-mediated ferrous iron uptake.
Metallomics. 2018 Jul 18;10(7):887-898. doi: 10.1039/c8mt00097b.
4
Ferrous iron efflux systems in bacteria.
Metallomics. 2017 Jul 19;9(7):840-851. doi: 10.1039/c7mt00112f.
5
Iron transport: emerging roles in health and disease.
Biochem Cell Biol. 2002;80(5):679-89. doi: 10.1139/o02-159.
8
Expression and purification of functionally active ferrous iron transporter FeoB from Klebsiella pneumoniae.
Protein Expr Purif. 2018 Feb;142:1-7. doi: 10.1016/j.pep.2017.09.007. Epub 2017 Sep 20.
9
Disentangling the Evolutionary History of Feo, the Major Ferrous Iron Transport System in Bacteria.
mBio. 2022 Feb 22;13(1):e0351221. doi: 10.1128/mbio.03512-21. Epub 2022 Jan 11.
10
The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron.
Biochim Biophys Acta. 2013 Oct;1833(10):2267-78. doi: 10.1016/j.bbamcr.2013.05.027. Epub 2013 Jun 10.

引用本文的文献

1
BioIron: Origin, Chemical Properties, and Biological Functions.
Adv Exp Med Biol. 2025;1480:1-15. doi: 10.1007/978-3-031-92033-2_1.
2
The Coordination Chemistry of Two Peptidic Models of NFeoB and Core CFeoB Regions of FeoB Protein: Complexes of Fe(II), Mn(II), and Zn(II).
Inorg Chem. 2025 Mar 17;64(10):5038-5052. doi: 10.1021/acs.inorgchem.4c05111. Epub 2025 Mar 6.
3
The Ferroxidase-Permease System for Transport of Iron Across Membranes: From Yeast to Humans.
Int J Mol Sci. 2025 Jan 21;26(3):875. doi: 10.3390/ijms26030875.
4
Metals in Motion: Understanding Labile Metal Pools in Bacteria.
Biochemistry. 2025 Jan 21;64(2):329-345. doi: 10.1021/acs.biochem.4c00726. Epub 2025 Jan 5.
5
Characterization of intact FeoB in a lipid bilayer using styrene-maleic acid (SMA) copolymers.
Biochim Biophys Acta Biomembr. 2025 Feb;1867(2):184404. doi: 10.1016/j.bbamem.2024.184404. Epub 2024 Dec 16.
6
Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking.
Chem Rev. 2024 Dec 25;124(24):13574-13659. doi: 10.1021/acs.chemrev.4c00264. Epub 2024 Dec 10.
8
Structural Determinants of FeoB Nucleotide Promiscuity.
bioRxiv. 2024 May 22:2024.05.22.595361. doi: 10.1101/2024.05.22.595361.
9
The operon protects magnesium-dependent enzymes by supporting manganese efflux.
J Bacteriol. 2024 Jun 20;206(6):e0005224. doi: 10.1128/jb.00052-24. Epub 2024 May 31.
10
The operon protects magnesium-dependent enzymes by supporting manganese efflux.
bioRxiv. 2024 Feb 15:2024.02.14.580342. doi: 10.1101/2024.02.14.580342.

本文引用的文献

1
Identification of a New Antimicrobial Agent against Bovine Mastitis-Causing .
J Agric Food Chem. 2021 Sep 1;69(34):9968-9978. doi: 10.1021/acs.jafc.1c02738. Epub 2021 Aug 18.
2
Highly accurate protein structure prediction with AlphaFold.
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
3
4
Salmonella Typhimurium and inflammation: a pathogen-centric affair.
Nat Rev Microbiol. 2021 Nov;19(11):716-725. doi: 10.1038/s41579-021-00561-4. Epub 2021 May 19.
5
The Crystal Structure of the Ca-ATPase 1 from Listeria monocytogenes reveals a Pump Primed for Dephosphorylation.
J Mol Biol. 2021 Aug 6;433(16):167015. doi: 10.1016/j.jmb.2021.167015. Epub 2021 Apr 30.
6
Ferric iron reductases and their contribution to unicellular ferrous iron uptake.
J Inorg Biochem. 2021 May;218:111407. doi: 10.1016/j.jinorgbio.2021.111407. Epub 2021 Feb 25.
7
Characterization of an Antibacterial Agent Targeting Ferrous Iron Transport Protein FeoB against and Gram-Positive Bacteria.
ACS Chem Biol. 2021 Jan 15;16(1):136-149. doi: 10.1021/acschembio.0c00842. Epub 2020 Dec 30.
8
FeoB hydrolyzes ATP and GTP in the absence of stimulatory factors.
Metallomics. 2020 Dec 23;12(12):2065-2074. doi: 10.1039/d0mt00195c.
9
Biochemical characterization of bacterial FeoBs: A perspective on nucleotide specificity.
Arch Biochem Biophys. 2020 May 30;685:108350. doi: 10.1016/j.abb.2020.108350. Epub 2020 Mar 24.
10
ZupT Facilitates Clostridioides difficile Resistance to Host-Mediated Nutritional Immunity.
mSphere. 2020 Mar 11;5(2):e00061-20. doi: 10.1128/mSphere.00061-20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验